首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular ionic distribution in uncleaved and cleaving Ambystoma eggs was investigated by analysing the influx of 3H2O, by determining the total content of Na+, K+ and Cl? in extracts of eggs at different stages by both flame spectrophotometry and ion-selective microelectrodes, and by the continuous measurement of the Na+, K+ and Cl? activities (aNai, aKi and aCli) using intracellular ion-selective microelectrodes. The electrical membrane potential (Em) and membrane resistance (Rm) were measured continuously in uncleaved and normally cleaving eggs as well as in eggs cleaving after removal of the vitelline membrane. The latter eggs expose their newly formed cleavage membrane to the external medium. Ionic permeability of the cell membrane before and during cleavage was analysed by a statistical comparison of the experimentally determined relationship between Em and the ionic gradients across the cell membrane with those predicted theoretically from a constant field equation in dependence on the relative permeability, through insertion of the measured intracellular ion activities.3H2O influx revealed the existence of a single intracellular water compartment (3.06 μl/egg) and a low water permeability (5.35 × 10?5 cm sec?1). Na+, K+ and Cl? concentrations were constant at 54.1, 72.1 and 73.1 mM respectively, while aNai, aKi and aCli were constant at 5.8, 51.8 and 59.7 mM respectively. It was concluded that all Cl? ions are in solution, while 12.5% of all K+ and 86% of all Na+ is bound. The uncleaved egg showed a positive Em of ca 40 mV and a specific membrane resistance of 39 kOhm cm2. Em could be described by a constant field equation with a permeability ratio PKPNa= 0.073. Shortly after the onset of first cleavage, Em rapidly decreased concomitant with a rise in Rm (68.5 kOhm cm2). This was interpreted as a drop in Na+ permeability. During the cleavage process Em progressively hyperpolarized and Rm decreased due to the insertion of a small fraction (3.3%) of the newly formed intercellular membrane into the cleavage furrow. This new membrane had a low specific resistance (0.69 kOhm cm2). Both in normally cleaving eggs and in eggs cleaving in the absence of the vitelline membrane Em behaved according to the constant field equation, PNaPK being 0.69 and 0.39, respectively. The differences with other amphibian eggs were discussed.  相似文献   

2.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ̄Na and Δμ̄Cl). Δμ̄Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ̄Cl (1000–2000 J · mol?1).  相似文献   

3.
Steady state Cl? flux across the Ehrlich mouse ascites cell membrane was studied when gluconate replaced Cl? in the external medium. Saturation behavior was observed; K12 was 23.9 mM Cl? and V was 758 μmol · g?1 dry weight · h?1. The cells lost K+, Cl? and H2O, consistent with relative impermeability to gluconate, and the Cl? efflux rate coefficient was elevated. The results indicate that a major portion of Cl? exchange occurs as a membrane transport process and suggest that the process is sensitive to intracellular Cl? levels.  相似文献   

4.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

5.
The effect of external and internal K+ on Nao+-dependent Ca2+ efflux was studied in dialyzed squid axons under constant membrane potential. With axons clamped at their resting potentials, external K+ (up to 70 mM) has no effect on Na+?Ca2+ exchange. Removal of Ki+ causes a marked inhibition in the Nao+-dependent Ca2+ efflux component. Internal K+ activates the Na+?Ca2+ exchange with low affinity (K12 = 90 mM). Activation by Ki+ is similar in the presence or in the absence of Nai+, thus ruling out a displacement of Nai+ from its inhibitory site. Axons dialyzed with ATP also show a dependency of Ca2+ efflux on Ki+. The present results demonstrate that Ki+ is an important cofactor (partially required) for the proper functioning of the forward Na+?Ca2+ exchange.  相似文献   

6.
On incubation of HeLa cells in chilled isotonic medium, intracellular Na+ (Nac+) increased and K+ (Kc+) decreased with time, reaching steady levels after 3 h. The steady levels varied in parallel with the extracellular cation concentrations ([Na+]e, [K+]e). The cell volumes and the protein and water contents, respectively, of cells kept for 3 h in chilled media of various [Na+]e and [K+]e were not significantly different. Ouabain-sensitive Rb+ influx took place at the initial rate for a certain period which depended on [Na+]c at the beginning of the assays. The existence of two external K+ loading sites per Na+/K+-pump was demonstrated. The affinities of the sites for Rb+ as a congener of K+ were almost the same. Nae+ inhibited ouabain-sensitive Rb+ influx competitively, whereas Kc+ was not inhibitory. Kinetic parameters were determined: the K12 for Rbe+ in the absence of Nae+ was 0.16 mM and the Ki for Nae+ was 36.8 mM; the K12 was 19.5 mM and the Ki for Kc+ seemed to be extremely large. The rate equation of the ouabain-sensitive Rb+ influx suggests that Na+ and K+ are exchanged alternately through the pump by a binary mechanism.  相似文献   

7.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

8.
The uptake of l-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is Na+-dependent. In contrast to Na+-dependent uptake of d-glucose, pre-equilibration of the vesicles with K+ stimulates l-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent l-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate l-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of l-glutamic acid.The data indicate that Na+-dependent l-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ renders Na+-dependent l-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.  相似文献   

9.
(1) The active transport of Na+ across the turtle bladder epithelial cell layer consists of a passive entry step through a Na+-selective path in the apical membrane and an active extrusion step through Na+ pump-containing path in the basal-lateral membrane together with some back-leakage through the paracellular spaces and tight junctions between the epithelial cells. This hypothesis has now been verified qualitatively and to some extent, quantitatively by the use of an intracellularly-located microelectrode in conjunction with a conventional assembly of extracellularly-located macroelectrodes mainly in short-circuited bladders bathed by Na+-rich Ringer media. Under these conditions, the intracellular potential (Vsc) averaged 38.4 mV with the cell electronegative; the fractional resistance of the apical membrane (?Ra) averaged 0.55; while the concomitant transepithelial parameters, short circuiting current (Isc) and electrical conductance (Gt), average 68.6 μA/cm2 and 0.98 mS/cm2, respectively. (2) The relation between these parameters and the transepithelial flow of Na+ (orIsc) is evoked by blocking Na+ entry into the cell (by the mucosal addition of amiloride or removal of mucosal Na+). Amiloride-induced blockade of the Na+ entry step results in a rapid hyperpolarization of the cell interior during which Vsc = —79.1 mV and ?Ra = 0.92. Isc and Gt (equivalent to the shunt conductance under these conditions) averaged 5 μA/cm2 and 0.35 mS/cm2, respectively. The entire process is reversible on re-admission of Na+ entry into the cell. (3) A slow depolarization of the cell interior in the period of blocked transapical Na+ entry is opposite to that expected from an electroneutral Na+-K+ exchanging pump; but instead is the predictable response of an electrogenic Na+ pump in parallel with a passive K+-selective conductance in the basal-lateral membrane. (4) The electrogenicity concept is substantiated after pretreatment of the bladder with serosal ouabain, which changes the response of Vsc to amiloride (from the aforementioned biphasic response) to a step-function response, attributable mainly to the development of a slowly dissipating K+ diffusion potential across the basallateral membrane. (5) Under open-circuit conditions, the electronegativity of cell to mucosa (Va) is a linear inverse function of the electropositivity of serosa to mucosa (Vt). For Vt ? 100 mV, Va is positive; and for Vt between ?30 and 90 mV, Va is negative.  相似文献   

10.
The pH dependence of the reaction of tris(hydroxymethyl)aminomethane (Tris) with the activated carbonyl compound 4-trans-benzylidene-2-phenyloxazolin-5-one (I) is given by the equation k′2 = kbKa(Ka + [H+]) + ka[OH?]Ka(Ka + [H+]), where Ka is the dissociation constant of TrisH+. Spectrophotometric experiments show that the Tris ester of α-benzamido-trans-cinnamic acid is formed quantitatively over a range of pH values, regardless of the relative contribution of kb and ka terms to k2. Hence, both terms refer to alcoholysis. While the mechanism of the reaction is not determined unequivocally in the present work, the magnitude of the kb term, together with its dependence on the basic form of Tris, suggests that ester formation is occurring by nucleophilic attack of a Tris hydroxyl group on the carbonyl carbon of the oxazolinone, with intramolecular catalysis by the Tris amino group. The rate enhancement due to this group is at least 102 and possibly of the order 106. This system is compared with other model systems for the acylation step of catalysis by serine esterases and proteinases.  相似文献   

11.
In genetically low K+ but not in high K+ red cells of sheep and goat N-ethylmaleimide induced a ouabain insensitive K+ flux as measured by tracer influx or net efflux methods. The augmented K+ flux was observed in Cl? or Br? but not in NO3?, SO42? or PO42? media. The action of N-ethylmaleimide was distinct from that of parachloromercuribenzoate or its sulfonic acid derivative which increased both passive K+ and Na+ movements across the red cell membrane. The instantaneous selective action of N-ethylmaleimide suggests that sulfhydryl groups control a K+Cl? transport system which, associated with the low K+ gene, is apparently functionally silent in adult ruminant red cells.  相似文献   

12.
13.
An ATPase is demonstrated in plasma membrane fractions of goldfish gills. This enzyme is stimulated by Cl? and HCO3?, inhibited by SCN?.Biochemical characterization shows that HCO3? stimulation (Km = 2.5 mequiv./l) is specifically inhibited in a competitive fashion by SCN? (Ki = 0.25 mequiv./l). The residual Mg2+-dependent activity is weakly is weakly affected by SCN?.In the microsomal fraction chloride stimulation of the enzyme occurs in the presence of HCO3? (Kmfor chloride = 1 mequiv./l); no stimulation is observed in the absence of HCO3?. Thiocyanate exhibits a mixed type of inhibition (Ki = 0.06 mequiv./l) towards the Cl? stimulation of the enzyme.Bicarbonate-dependent ATPase from the mitochondrial fraction is stimulated by Cl?, but this enzyme has a relatively weak affinity for this substrate (Km = 14 mequiv./l).  相似文献   

14.
In this study the effects of experimental modifications of plasma membrane lipid lateral mobility on the electrical membrane properties and cation transport of mouse neuroblastoma cells, clone Neuro-2A, have been studied. Short-term supplementation of a chemically defined growth medium with oleic acid or linoleic acid resulted in an increase in the lateral mobility of lipids as inferred from fluorescence recovery after photobleaching of the lipid probe 3,3′-dioctadecylindocarbocyanide iodide. These changes were accompanied by a marked depolarization of the membrane potential from ?51 mV to ?36 mV, 1.5 h after addition, followed by a slow repolarization. Tracer flux studies, using 86Rb+ as a radioactive tracer for K+, demonstrated that the depolarization was not caused by changes in (Na+ + K+)-ATPase-mediated K+ influx or in the transmembrane K+ gradient. The permeability ratio (PNaPK), determined from electrophysiological measurements, however, increased from 0.10 to 0.27 upon supplementation with oleic acid or linoleic acid. This transient rise of PNaPK was shown by 24Na+ and 86Rb+ flux measurements to be due to both an increase of the Na+ permeability and a decrease of the K+ permeability. None of these effects occurred upon supplementation of the growth medium with stearic acid.  相似文献   

15.
Intestinal brush border vesicles of a Mediterranean sea fish (Dicentrarchus labrax) were prepared using the Ca2+-sedimentation method. The transport of glucose, glycine and 2-aminoisobutyric acid is energized by an Na+ gradient (out > in). In addition, amino acid uptake requires Cl? in the extravesicular medium (2-aminoisobutyric acid more than glycine). This Na+- and Cl?-dependent uptake is electrogenic, since it can be stimulated by negative charges inside the vesicles. The specific Cl? requirement of glycine and 2-aminoisobutyric acid transport is markedly influenced by pH, a change from 6.5 to 8.4 reducing the role played by Cl?. In the presence of Cl?, the Km of 2-aminoisobutyric acid uptake is reduced and its Vmax is enhanced. Cl? affects also a non-saturable Na+-dependent component of this amino acid uptake. Amino acid transport is also increased by intravesicular Cl? (2-aminoisobutyric acid less than glycine). This effect is more concerned with glucose uptake, which can be then multiplied by 2.3. A concentration gradient (in > out) as well as the presence of Na+ in the incubation medium seems to enter into this requirement. This intravesicular Cl? effect is not influenced by pH between 6.5 and 8.4.  相似文献   

16.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

17.
The sarcolemmal membranes isolated from rat skeletal muscle are capable of incorporating 32P from [γ?32P]ATP. The membrane protein phosphorylation requires Mg2+. Cyclic AMP, cyclic GMP and their dibutyrul derivatives showed no marked effect on sarcolemmal phosphorylation.The Mg2+-dependent 32P labeling was significantly enhanced by Na+. The rate of Na+ -stimulated 32P incorporation was quite rapid reaching steady state levels within 5 s at 0 °C. K+ reduced the Na+ -stimulated 32P-incorporation but enhanced the 32Pi release. This inhibitory effect of K+ on Na+ -stimulated 32P incorporation was prevented by the cardiac glycoside, ouabain.The Na+ -dependent 32P labeling showed substrate dependency and the Na+ site was saturable. The apparent Km for ATP was 2 · 10?5 M. The optimum pH for 32P labeling was between 7 and 8.Na+ -dependent membrane phosphorylation showed a direct relationship with the (Na+ + K+ATPase activity. The high turnover rate of 32P intermediate (12 000 min ?1) suggested its functional significance in the overall transport ATPase reaction sequence.The predominate portion (> 90%) of the phosphorylated membrane complex was sensitive to acidified hydroxylamine and to alkaline pH suggesting an acylphosphate nature of the phosphoprotein.Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 32P incorporation occurred predominately into a 108 000 dalton subunit which is a major protein component of sarcolemmal membranes. A very low level of 32P incorporation was also observed into a 25 000 dalton subunit and Ca2+ slightly enhanced the phosphorylation of this component.The size (Mr 108 000) and some properties of the sarcolemmal phosphoprotein are closely similar to other (Na+ + K+ATPase preparations reported so far.  相似文献   

18.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

19.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   

20.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号