首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
1. Reduction of a 19s immunoglobulin M with 3mm-mercaptoethanol or 0.05-0.5mm-dithiothreitol followed by alkylation gave sedimentation patterns indicating products compatible with structures consisting of one, two, three, four and five 7s sub-units. This supports the concept of a five-sub-unit structure for immunoglobulin M. 2. Reduction with 0.125mm-dithiothreitol or 20mm-cysteine produced 7s sub-units that could not be dissociated into chains in m-propionic acid. 3. By labelling (with iodo[2-(14)C]acetic acid) the thiol groups liberated during reduction with 0.125mm-dithiothreitol, it was possible to identify the tryptic peptides involved in the disulphide bridges that link the 7s sub-units together (inter-sub-unit bridges). 4. By further reducing and labelling (with iodo[2-(14)C]acetic acid) the 7s sub-units produced by 0.125mm-dithiothreitol, it was possible to identify tryptic peptides derived from intra-sub-unit bridges. 5. Sub-units produced by reduction with 20mm-cysteine proved to be unsuitable for distinguishing between inter-sub-unit bridges and intra-sub-unit bridges. 6. The possible arrangement of the interchain disulphide bridges was deduced.  相似文献   

3.
The effects of a highly acidic environment on the cell-associated alkaline phosphatase activities of a smooth and a rough strain of Escherichia coli O8 have been examined. The observation that cell-associated enzyme is denatured to a lesser degree than purified enzyme suggests that the association of the enzyme with the cell envelope affords it some degree of protection from potentially disruptive agents in the environment. The degree of protection afforded the enzyme from pH denaturation appears to be dependent upon the presence of a complete lipopolysaccharide in the outer membrane of these strains. An abbreviation of the chemical structure of this cell envelope component produces a change in the outer membrane, resulting in increased susceptibility of the cells to a battery of antibiotics and to lysozyme and in a small, but significant, change in the sensitivity of the cell envelope-associated alkaline phosphatase to the denaturing effect of an acidic environment.  相似文献   

4.
p-Fluorophenylalanine (FPA) causes a 100-fold increase in alkaline phosphatase in Escherichia coli B, strain PR1 at 30 C in minimal medium that contains excess inorganic phosphate (1.92 x 10(-3)m). Little increase in alkaline phosphatase synthesis occurs under these conditions at 22 C. [This strain is known to have a mutation in a regulator gene (R(2)) that, in the absence of FPA, permits derepression of alkaline phosphatase synthesis at 37 C, but not at 30 C or below.] In contrast, E. coli B3 (the strain from which E. coli B strain PR1 was derived) is not derepressed at 30 C by FPA. (14)C-FPA is incorporated into bacterial proteins. Temperature-shift experiments (30 Cright harpoon over left harpoon22 C) in the presence of FPA are consistent with the following mechanism. FPA is incorporated into the genetically altered R(2) protein at 30 and 22 C. This further alteration due to the incorporation of analogue makes the R(2) protein inactive at 30 C, but active at 22 C.  相似文献   

5.
Signal sequence of alkaline phosphatase of Escherichia coli.   总被引:7,自引:9,他引:7       下载免费PDF全文
The amino acid sequence of the signal sequence of phoA was determined by DNA sequencing by using the dideoxy chain termination technique (Sanger et al., Proc. Natl. Acad. Sci. U.S.A. 74:5463-5467, 1977). The template used was single-stranded DNA obtained from M13 on f1 phage derivatives carrying phoA, constructed by in vitro recombination. The results confirm the sequence of the first five amino acids determined by Sarthy et al. (J. Bacteriol. 139:932-939, 1979) and extend the sequence in the same reading frame into the amino terminal region of the mature alkaline phosphatase (Bradshaw et al., Proc. Natl. Acad. Sci. U.S.A., 78:3473-3477, 1981). As was predicted (Inouye and Beckwith, Proc. Natl. Acad. Sci. U.S.A. 74:1440-1444, 1977), the signal sequence was highly hydrophobic. The alteration of DNA sequence was identified for a promoter mutation that results in the expression of phoA independent of the positive control gene phoB and in insensitivity to high phosphate.  相似文献   

6.
7.
8.
Proteolytic modification of the native alkaline phosphatase dimer is restricted to sites in the amino-terminal portion of the sequence. Complementing previous studies of the product of trypsin cleavage at the R-11, A-12 bond (Roberts, C. H., and Chlebowski, J. F. (1984) J. Biol. Chem. 259, 729-733; Roberts, C. H., and Chlebowski, J. F. (1984) J. Biol. Chem. 260, 7557-7561) circular dichroic spectroscopy indicates that cleavage at this site results in a rearrangement of secondary structure and change in tertiary structure as monitored in the far and near UV regions, respectively. Under more vigorous reaction conditions, trypsin cleaves at the R-35, D-36 bond. The deletion of an additional 24 residues yields a species whose functional and structural properties are similar to the initial product of trypsin cleavage. Treatment of the enzyme with Protease V-8 results in cleavage at the E-9, N-10 bond. In contrast to the products of trypsin treatment, this truncated enzyme is similar to the native enzyme. These results indicate that the residues at the N-10 and R-11 positions play a unique role in maintaining the structural integrity and catalytic potency of the enzyme although this locus is distant from the enzyme active centers. These observations are discussed in terms of the three-dimensional structure of the enzyme.  相似文献   

9.
10.
The temperature-jump technique was used to study the binding equilibrium between the Escherichia coli alkaline phosphatase dimer and 2-hydroxy-5-nitrobenzyl phosphonate in 0.1m-tris buffer, pH8.0. Three partially discrete relaxations were observed, two of which could be related to the bimolecular associations of ligand with different conformations of the enzyme and the third to the interconversion of these states. Relaxation spectra were also used to analyse the changes in the mechanism of ligand binding to alkaline phosphatase caused by increase in ionic strength. The relaxation spectrum observed after the addition of P(i) to the equilibrium mixture of phosphonate and enzyme was also studied. Difference spectroscopy indicated that both of these ligands were bound to the alkaline phosphatase dimer at the same time. These results are related to the catalytic mechanism of this enzyme, with particular reference to the role of two identical subunits in a dimeric enzyme that exhibits only one active site functioning in catalysis at any given time.  相似文献   

11.
Hybrids of chemical derivatives of Escherichia coli alkaline phosphatase.   总被引:1,自引:0,他引:1  
The activities of hybrid dimers of alkaline phosphatase containing two chemically modified subunits have been investigated. One hybrid species was prepared by dissociation and reconstitution of a mixture of two variants produced by chemical modification of the native enzyme with succinic anhydride and tetranitromethane, respectively. The succinyl-nitrotyrosyl hybrid was separated from the other members of the hybrid set by DEAE-Sephadex chromatography and then converted to a succinyl-aminotyrosyl hybrid by reduction of the modified tyrosine residues with sodium dithionite. A comparison of the activities of these two hybrids with the activities of the succinyl, nitrotyrosyl and aminotyrosyl derivatives has shown that either the subunits of alkaline phosphatase function independently or if the subunits turnover alternately in a reciprocating mechanism, then the intrinsic activity of each subunit must be strongly dependent on its partner subunit.  相似文献   

12.
Escherichia coli alkaline phosphatase. An analysis of transient kinetics   总被引:7,自引:6,他引:1  
1. The hydrolysis of 2,4-dinitrophenyl phosphate by Escherichia coli alkaline phosphatase at pH5.5 was studied by the stopped-flow technique. The rate of production of 2,4-dinitrophenol was measured both in reactions with substrate in excess of enzyme and in single turnovers with excess of enzyme over substrate. It was found that the step that determined the rate of the transient phase of this reaction was an isomerization of the enzyme occurring before substrate binding. 2. No difference was observed between the reaction after mixing a pre-equilibrium mixture of alkaline phosphatase and inorganic phosphate, with 2,4-dinitrophenyl phosphate at pH5.5 in the stopped-flow apparatus, and the control reaction in which inorganic phosphate was pre-equilibrated with the substrate. Since dephosphorylation is the rate-limiting step of the complete turnover at pH5.5, this observation suggests that alkaline phosphatase can bind two different ligands simultaneously, one at each of the active sites on the dimeric enzyme, even though only one site is catalytically active at any given time. 3. Kinetic methods are outlined for the distinction between two pathways of substrate binding, which include an isomerization either of the free enzyme or of the enzyme-substrate complex.  相似文献   

13.
14.
1. Benzyl phosphonates were prepared and their potentialities as chromophoric reagents for the exploration of the substrate-binding site of Escherichia coli alkaline phosphatase were investigated. 4-Nitrobenzylphosphonate is a competitive inhibitor of the enzyme. 2-Hydroxy-5-nitrobenzylphosphonate changes its spectrum on binding to the enzyme. This spectral change is reversed when the phosphonate is displaced from the enzyme by substrate. 2. The kinetics of the reaction of 2-hydroxy-5-nitrophenylphosphonate were studied by the stopped-flow and the temperature-jump techniques. It was found that the combination of the phosphonate with the enzyme occurred in two successive and reversible steps: enzyme-phosphonate complex-formation followed by rearrangement of the complex. The spectral change is associated with the rearrangement. At pH8 in 1m-sodium chloride at 22 degrees the rate constant is 167sec.(-1) for the rearrangement of the initially formed binary complex and is 18sec.(-1) for the reverse process. 3. It has previously been proposed that the reactions of phosphatase with its substrates include a distinct step between enzyme-substrate combination and chemical catalysis. The rate constant involved could be predicted but not measured from experiments with substrates. The value for the rate constant measured from the rate of the enzyme-phosphonate rearrangement is in excellent agreement with the predicted value. A model for the reaction mechanism is proposed that includes a conformation change in response to phosphate ester binding before phosphate transfer from substrate to enzyme.  相似文献   

15.
Since alkaline phosphatase from Escherichia coli was first reported to contain 2.1 g-atoms of zinc and 0.8 g-aton of magnesium per molecular weight 80,000 (Plocke, D.J., Levinthal, D., and Vallee, B. L. (1962), Biochemistry 1, 373-378), the procedures for isolation and purification of the enzyme, as well as values for the protein molecular weight, specific absorptivity, and maximal activity, have changed repeatedly. Such variations have resulted in uncertainties concerning the molar metal content of this phosphatase. The present paper reviews the initial and recent results of metal analyses of alkaline phosphatase preparations in this laboratory and compares them with those obtained elsewhere, while simultaneously identifying some of the factors which have affected reports on the metal content of this enzyme. A purification procedure is described eliminating the features of all methods known to alter the metal content of phosphatase. In addition, the three isozymic forms, as well as preparations from four E. coli strains commonly employed for phosphatase isolation, were analyzed and compared.  相似文献   

16.
17.
Ultraviolet difference spectra are produced by the binding of divalent metal ions to metal-free alkaline phosphatase (EC 3.1.3.1). The interaction of the apoprotein with Zn2+, Mn2+, Co2+ and Cd2+, which induce the tight binding of one phosphate ion per dimer, give distinctly different ultraviolet spectra changes from Ni2+ and Hg2+ which do not induce phosphate binding. Spectrophotometric titrations at alkaline pH of various metallo-enzymes reveal a smaller number of ionizable tyrosines and a greater stability towards alkaline denaturation in the Zn2+- and Mn2+-enzymes than in the Ni2+-, Hg2+- and apoenzymes. The Zn2+- and Mn2+-enzymes have CD spectra in the region of the aromatic transitions that are different from the CD spectra of the Ni2+-, Hg2+- and apoenzymes. Modifications of arginines with 2,3-butanedione show that a smaller number of arginine residues are modified in the Zn2+-enzyme than in the Hg2+-enzyme. The presented data indicate that alkaline phosphatase from Escherichia coli must have a well-defined conformation in order to bind phosphate. Some metal ions (i.e. Zn2+, Co2+, Mn2+ and Cd2+), when interacting with the apoenzyme, alter the conformation of the protein molecule in such a way that it is able to interact with substrate molecules, while other metal ions (i.e. Ni2+ and Hg2+) are incapable of inducing the appropriate conformational change of the apoenzyme. These findings suggest an important structural function of the first two tightly bound metal ions in enzyme.  相似文献   

18.
Molecular asymmetry in alkaline phosphatase of Escherichia coli   总被引:1,自引:0,他引:1  
Thermal inactivation of alkaline phosphatase of Escherichia coli has been studied at different temperatures (45 to 70 degrees C) and pHs (7.5, 9.0, and 10.0) for the commercial, buffer-dialyzed (pH 9.0) and EDTA-dialyzed (pH 9.0) enzymes. In each case, the inactivation exhibits biphasic kinetics consistent with the rate equation, (formula; see text) where A0 and A are activities at time zero and t, and k1 and k2 are first-order rate constants for the fast and slow phase, respectively. Values of k1 and k2 change independently with temperature, pH, and pretreatment (dialysis) of the enzyme. Time course of inactivation of the enzyme with excess EDTA and effect of Zn2+ ion concentration on the activity of EDTA-dialyzed enzyme have been investigated. The data suggest that the dimeric enzyme protein has two types of catalytic sites which have equal catalytic efficiency (or specific activity) but differ in several other properties. Structural implications of these results have been discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号