首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of collagens I, III, IV and V was studied by immunoperoxidase staining of early developing mouse submandibular glands. Collagen I was always present in the extracellular matrices of the mesenchyme and at the epithelial-mesenchymal interfaces of the 12-day gland with no clefts and of the 13-day gland with a few definite clefts. Collagen III was found in a similar fashion to that of collagen I in the mesenchyme, but the distribution at the epithelial-mesenchymal interfaces was very different. In the mid 12-day gland with a round lobule, collagen III was distributed at every slightly indented site of basal epithelial surfaces. At the late 12-day stage, a few initial signs of cleft appeared on the surface, at which accumulation of collagen III became evident. Intense immunoreaction of collagen III in the early 13-day gland was seen at the bottom of every narrow cleft. No specific accumulation of collagens IV and V was observed in clefts of the late 12-day and early 13-day glands. Staining of collagen III in the 12-day gland cultured for 10 h in the presence of bovine dental pulp collagenase inhibitor, which has been shown to stimulate cleft initiation, was very prominent at the bottom of every narrow cleft. These observations suggest that collagen III works as a key substance for either in vitro or in vivo cleft initiation of the mouse embryonic submandibular epithelium.  相似文献   

2.
A collagenase inhibitor obtained from the culture medium of bovine dental pulp markedly enhanced the cleft formation of mouse embryonic salivary gland epithelium when the inhibitor was included in the culture medium for 12-day and 13-day salivary glands. Determination of collagenase activity using [3H]collagen as substrate indicated that there was a latent collagenase activity in 12-day glands. In addition, a highly purified Clostridial collagenase freed from protease and hyaluronidase activities, strongly inhibited initiation of the cleft formation of the 12-day epithelium. Scanning electron microscopic observation showed that abundant collagen-like fibrils were seen on the epithelium in the collagenase-inhibitor-treated glands compared to those in the control. These findings suggest that during early morphogenesis tissue collagenase may regulate the cleft formation in the epithelium.  相似文献   

3.
An X-ray irradiation method was employed to analyse the role of cell proliferation in vitro in the cleft formation of mouse embryonic submandibular epithelium at early stages. When the mid 12-day gland was exposed to 200 rad of X-rays, the growth was severely retarded. In contrast, late 12-day and early 13-day glands grew apparently in a normal fashion, as did the control gland, for up to 40 h. In either case, they formed shallow clefts within 10 h of culture. With 1000 rad irradiation, the mid 12-day gland did not grow at all, but formed clefts within 20 h of culture followed by a rapid degeneration. Under the same conditions, the growth of the late 12-day gland, which was at the stage just before branching, was retarded until 10 h of culture, followed by a slight increase in epithelial size, but cleft formation was also observed within 6-10 h, as in the control gland. When exposed to a dose of 1000 rad of X-rays, the early 13-day and the late 12-day glands exhibited similar radiosensitivity; the initial narrow clefts in the epithelium deepened and new clefts began to form within 6-10 h of culture. [3H]thymidine incorporation studies revealed that a dose of 1000 rad reduced DNA synthesis of mid and late 12-day glands by 72 and 65%, respectively. Histological examination of X-irradiated late 12-day gland showed that mitotic figures were rarely seen in the epithelium at 6 h of culture. Aphidicolin, a specific inhibitor of DNA synthesis, could not halt the cleft formation of the late 12-day gland. In this experiment 89% of DNA synthesis was inhibited. Treatment of an X-ray irradiated late 12-day gland with aphidicolin blocked 92% of the DNA synthesis, but did not prevent cleft formation taking place. These results indicate that neither cell division nor DNA synthesis, is required for the initiation process of the cleft formation of the mouse embryonic submandibular epithelium at early morphogenetic stages in vitro.  相似文献   

4.
To investigate how the mesenchyme interacts with the epithelium, we employed three different culture systems: System A, in which intact submandibular gland rudiments at the mid 13-day stage were cultured on Millipore filters; System B, in which the 13-day epithelium and mesenchyme were separated once with dispase, recombined again, and cultured on the filter; System C, in which the separated 13-day epithelium was clotted with Matrigel and cultured with the mesenchyme across the filter or in the presence of EGF instead of the mesenchyme. In Systems A and B, 13-day epithelia expanded and produced similar lobules with narrow clefts and stalk. When the 13-day epithelium was cultured in System C under the influence of the mesenchyme, it formed rather oval lobules with stalk that were superficially similar to those in System A, but narrow clefts, as seen in the intact early 13-day gland, were rarely found in System C. Furthermore, no long stalk formation was observed when EGF was introduced in place of the mesenchyme. A bacterial collagenase from Clostridium histolyticum gave a considerable inhibition of branching of the 13-day epithelium in Systems A and B, but no significant inhibition was observed in System C when the mesenchyme or EGF was employed as the source of diffusible factor(s). In contrast, although the 13-day epithelium was significantly resistant to the action of heparitinase I from Flavobacterium heparinum in Systems A and B, the enzyme almost completely inhibited the expansion and branching of the epithelium in System C. Judging from these observations, we conclude that the mechanisms of lobular formation in Systems A and B are not the same as those in System C, where the epithelium is clotted with basement membrane matrix components during tissue culture.  相似文献   

5.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

6.
1. The contents of the fibrous proteins collagen and elastin in the pleural and parenchymal regions of bovine lungs were determined. The collagen content was approx. 70% (g/100g of salt-extracted defatted powder) in each tissue, and the elastin content was 28% in pleura and 13.5% in parenchyma. 2. Purification of the insoluble collagen from the pleura and parenchyma of bovine lungs by various methods was attempted. The collagen fractions isolated after incubation of the pulmonary tissues with the proteolytic enzymes collagenase ("collagenase-soluble" fraction) or pancreatic elastase ("elastase-insoluble" fraction) each contained approx. 87% of the total collagen initially present. 3. Both collagen fractions were chemically analysed for their amino acid and carbohydrate contents and were found to be similar to those of the intact interstitial collagens isolated from skin, bone and tendon. 4. The contents of the two aldimine cross-linking compounds, dehydrohydroxylysinonorleucine and dehydrodihydroxylysinonorleucine, were determined in the bovine pulmonary collagen fractions, and were found to decrease with increasing age of the animals, and were similar to the values found in intact collagens from bone and tendon.  相似文献   

7.
We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.  相似文献   

8.
The collagen substrate specificity of rat uterus collagenase   总被引:4,自引:0,他引:4  
The collagen substrate specificity of rat uterus collagenase was studied as a function of both collagen type and species of substrate origin. For each collagen examined, values for the basic kinetic parameters, Km and Vmax (kcat), were determined on collagen in solution at 25 degrees C. In all cases, Lineweaver-Burk plots were linear and rat uterus collagenase behaved as a normal Michaelis-Menten enzyme. Collagen types I, II, and III of all species tested were degraded by rat uterus collagenase. Collagen types IV and V were resistant to enzymatic attack. Both enzyme-substrate affinity and catalytic rates were very similar for all susceptible collagens (types I-III). Values for Km ranged from 0.9 to 2.5 X 10(-6) M. Values for kcat varied from 10.7 to 28.1 h-1. The homologous rat type I collagen was no better a substrate than the other animal species type I collagens. The ability of rat uterus collagenase to degrade collagen types I, II, and III with essentially the same catalytic efficiency is unlike the action of human skin fibroblast collagenase or any other interstitial collagenase reported to date. The action of rat uterus collagenase on type I collagen was compared to that of human skin fibroblast collagenase, with regard to their capacity to cleave collagen as solution monomers versus insoluble fibrils. Both enzymes had essentially equal values for kcat on monomeric collagen, yet the specific activity of the rat uterus collagenase was 3- to 6-fold greater on collagen fibrils than the skin fibroblast enzyme. Thus, in spite of their similar activity on collagen monomers in solution, the rat uterus collagenase can degrade collagen aggregated into fibrils considerably more readily than can human skin fibroblast collagenase.  相似文献   

9.
A model system consisting of highly purified lysyl oxidase and reconstituted lathyritic chick bone collagen fibrils was used to study the effect of collagen cross-linking on collagen degradation by mammalian collagenase. The results indicate that synthesis of approx. 0.1 Schiff-base cross-link per collagen molecule results in a 2--3-fold resistance to human synovial collagenase when compared with un-cross-linked controls or samples incubated in the presence of beta-aminopropionitrile to inhibit cross-linking. These results confirm previous studies utilizing artificially cross-linked collagens, or collagens isolated as insoluble material after cross-linking in vivo, and suggest that increased resistance to collagenase may be one of the earliest effects of cross-linking in vivo. The extent of intermolecular cross-linking among collagen fibrils may provide a mechanism for regulating the rate of collagen catabolism relative to synthesis in normal and pathological conditions.  相似文献   

10.
Type VII collagen is the major structural protein of anchoring fibrils, which are believed to be critical for epidermal-dermal adhesion in the basement membrane zone of the skin. To elucidate possible mechanisms for the turnover of this protein, we examined the capacities of two proteases, human skin collagenase, which degrades interstitial collagens, and a protease with gelatinolytic and type IV collagenase activities, to cleave type VII collagen. At temperatures below the denaturation temperature, pepsin cleaves type VII collagen into products of approximately 95 and approximately 75 kDa. Human skin collagenase cleaved type VII collagen into two stable fragments of approximately 83 and approximately 80 kDa, and the type IV collagenase (gelatinase) produced a broad band of approximately 80 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cleavage of type VII collagen was linear with time and enzyme concentration for both enzymes. Although the Km values were similar for both enzymes, the catalytic rate of cleavage by type IV collagenase is much faster than by interstitial collagenase, and shows a greater rate of increase with increasing temperature. Sequence analysis of the cleavage products from both enzymes showed typical collagenous sequences, indicating a relaxation in the helical part of the type VII collagen molecule at physiological temperature which makes it susceptible to gelatinolytic degradation. Interstitial collagenase from both normal skin cells and cells from patients with recessive dystrophic epidermolysis bullosa, a severe hereditary blistering disease in which both an anchoring fibril defect and excessive production of collagenase can be observed, produced identical cleavage products from type VII collagen. These data suggest a pathophysiological link between increased enzyme levels and the observed decrease or absence of anchoring fibrils.  相似文献   

11.
Biosynthetic and structural properties of endothelial cell type VIII collagen   总被引:16,自引:0,他引:16  
A highly unusual endothelial cell collagen (Sage, H., Pritzl, P., and Bornstein, P., (1980) Biochemistry 19, 5747-5755) has been characterized in greater detail. Pulse-chase experiments with bovine aortic endothelial cells revealed two nondisulfide-bonded collagens, of apparent chain Mr = 177,000 and 125,000, with an estimated synthesis and secretion time of 75 min. Stepwise, quantitative processing to stable lower molecular weight forms as described for type I procollagen was not observed. Endothelial collagen was secreted over a temperature range of 24-37 degrees C and, prior to heat denaturation, did not display affinity for a gelatin-binding fragment of fibronectin coupled to Sepharose. The presence of a pepsin-resistant domain (Mr = 50,000) in both the soluble and cell layer-associated forms of this protein was shown by ion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Endothelial collagen was cleaved by vertebrate collagenase into several discrete fragments that differed in molecular weight from the characteristic alpha A and alpha B fragments generated from the interstitial collagens. Nontriple helical domains corresponding to the NH2- and COOH-terminal propeptides of other procollagen types were not found after incubation of endothelial collagen with bacterial collagenase. Additional evidence for the lack of extended noncollagenous sequences was provided by studies with mast cell proteases, which convert native procollagen to collagen but are unreactive toward native interstitial collagens. Endothelial collagen was not cleaved by these enzymes at 37 degrees C, but, as observed for interstitial collagen alpha chains, required prior heating at elevated temperatures for cleavage to occur. In view of this unique set of structural characteristics, and a distribution that is not restricted to the endothelium, we have designated this protein as type VIII collagen.  相似文献   

12.
Preparations have been made of acid-soluble collagens whose telopeptides have suffered different levels of proteolytic attack. The collagens with more intact telopeptides form fibrils more rapidly than those with degraded telopeptides. In addition, we have shown that a high molecular weight aggregate rich in the carboxyterminal CNBr peptide, α1CB6, can be found in cyanogen bromide digests of fibrils formed from intact collagen. A similar aggregate is found in CNBr digests of native tendons. The aggregate formed in fibrils assembled in vitro can be stabilized by reduction, and its generation is strongly dependent on the presence of intact telopeptides. The latter point is the most objective evidence that to reproduce the characteristics of native fibrils in vitro, the collagen telopeptides must be preserved from proteolysis.  相似文献   

13.
In primates the membrane separating the seminiferous epithelium from the interstitial space is composed of one to three (monkey) or two to six layers (man) of myoid cells associated with one to two layers of fibrocyte-like adventitial cells. All these cells are separated from each other by irregular spaces filled with various connective tissue intercellular components. Subjacent to the elements of the seminiferous epithelium is a continuous, often redundant, basement membrane. A similar basement membrane-like material forms a layer next to and over small areas of the plasma membrane of myoid cells. Collagen fibrils grouped in bundles of various sizes are seen in all connective tissue layers but are particularly abundant in the space between the seminiferous epithelium and the innermost layer of myoid cells. Elastic fibrils demonstrated by the Verhoeff iron hematoxylin technique are also present. Composed of a homogeneous material, the elastic fibrils are short, irregular, branching entities with a diameter comparable to or smaller than that of collagen fibrils. In addition, an abundance of microfibrils with a diameter of 12-15 nm is present in the various connective tissue layers. These microfibrils have a densely stained cortex and a lightly stained core. When seen close to the myoid cells, bundles of micro fibrils appear to insert on well defined areas next to the plasma membrane. These areas commonly face the patches of electron-dense material observed on the inner aspect of the plasma membrane of the myoid cells and in which the actin filaments are inserted. Bundles of microfibrils often span the gap between myoid cells of the same layer as well as those of adjacent layers. Microfibrils are also closely related to the surface of elastic fibrils and are seen intertwining with collagen fibrils. Thus microfibrils appear to bridge and bind together adjacent myoid cells and anchor the surface of these cells to the bundles of elastic and collagen fibrils present in the intercellular spaces of the limiting membrane.  相似文献   

14.
Calf skin and rat tendon type I, bovine cartilage type II, and human amnion type III collagens have been radiolabeled by reaction with [3H]acetic anhydride, [3H]formaldehyde, and succinimidyl 2,3-[3H]propionate. All three reactions produce collagens with high specific activities that are suitable for use as substrates in collagenase assays. The identity of the radiolabel and the labeling indices do not alter the molecular weights or thermal stabilities of the collagens or the solubilities of the collagens or gelatins in dioxane-water mixtures at 4 degrees C. However, in contrast to native or sparsely labeled collagens, those with 40 or more lysine + hydroxylysine residues labeled per molecule do not undergo fibrillogenesis in the presence of 0.2-0.4 M NaCl in the 4-35 degree C temperature range. Thus, the modification reactions not only serve to introduce the radiolabel, but also to keep the collagens soluble over a wide range of temperatures and concentrations. The TCA, TCB fragments produced on partial reaction of each collagen type with tissue collagenases can be selectively denatured by a 10-minute incubation under specific conditions and the intact collagens selectively precipitated by addition of 50% v/v dioxane. This serves as the basis for soluble collagenase assays. The effect of labeling index on the properties of the collagens has been investigated and the results establish the range of conditions over which these collagens can be used as substrates for soluble versus fibrillar collagenase assays.  相似文献   

15.
Collagen fibrils from the dermis of Sepia officinalis were processed for immunoelectron microscopy to reveal reactions to antibodies against mammalian types I, III, and V, teleost type I and cephalopod type I-like collagens, by single and double immunogold localization. The fibrils were observed: (a) in suspensions of prepared fibrils, (b) in ultrathin sections of embedded fibril preparations, and (c) in ultrathin sections of dermal tissue. Some samples were subjected to acetic acid or urea dissociation. It was found that collagen fibrils from Sepia dermis are heterotypic in that they are composed of type I-like and type V collagens. Type I-like collagen epitopes were present mainly at the periphery of the fibrils; type V collagen epitopes were present throughout the fibrils. This is the first demonstration that collagen fibrils from an invertebrate are heterotypic, suggesting that heterotypy may be an intrinsic characteristic of the fibrils of fibrillar collagens, independent of evolutionary or taxonomic status.  相似文献   

16.
Aggregation of platelets by fibrils formed from collagens type I, II and III could be inhibited by coating the fibrils with anti-collagen antibodies or Fab fragments. Similar results were obtained in a clot-retraction assay. Inhibition was achieved with stoichiometric amounts of antibodies and was specific for each type of collagen. Aggregation caused by a mixture of type-I and -III collagens could only be inhibited by a mixture of antibodies against both collagens. The data show that each interstitial collagen is capable of interacting with platelets and do not support the concept of an outstanding activity of type-III collagen.  相似文献   

17.
Human recombinant-gamma-interferon was tested on human dental pulp fibroblast activity in vitro. Fibroblast proliferation was estimated by a colorimetric test. Type I and type III collagens and fibronectin were quantified by radioimmunoassay in culture supernatant from confluent fibroblasts. A dose dependent stimulation of the proliferation was observed when fibroblasts were treated with recombinant-gamma-interferon. In contrast, an inhibition of the synthesis of soluble types I and III collagen and fibronectin by confluent cell cultures treated with recombinant-gamma-interferon occurred without apparent modification of the insoluble collagen level in the cell layer. Quantimetric analysis of type I collagen immunoperoxidase labelling have demonstrated that there was no intracellular storage of type I collagen in these cultured fibroblasts. These data support the view that human recombinant-gamma-interferon can affect human dental pulp fibroblast functions and thus may play an important part in the regulation of fibrosis.  相似文献   

18.
Fibril-forming collagens in lamprey   总被引:1,自引:0,他引:1  
Five types of collagen with triple-helical regions approximately 300 nm in length were found in lamprey tissues which show characteristic D-periodic collagen fibrils. These collagens are members of the fibril forming family of this primitive vertebrate. Lamprey collagens were characterized with respect to solubility, mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, carboxylmethyl-cellulose chromatography, peptide digestion patterns, composition, susceptibility to vertebrate collagenase, thermal stability, and segment long spacing-banding pattern. Comparison with fibril-forming collagens in higher vertebrates (types I, II, III, V, and XI) identified three lamprey collagens as types II, V, and XI. Both lamprey dermis and major body wall collagens had properties similar to type I but not the typical heterotrimer composition. Dermis molecules had only alpha 1(I)-like chains, while body wall molecules had alpha 2(I)-like chains combined with chains resembling lamprey type II. Neither collagen exhibited the interchain disulfide linkages or solubility properties of type III. The conservation of fibril organization in type II/type XI tissues in contrast to the major developments in type I and type III tissues after the divergence of lamprey and higher vertebrates is consistent with these results. The presence of type II and type I-like molecules as major collagens and types V and XI as minor collagens in the lamprey, and the differential susceptibility of these molecules to vertebrate collagenase is analogous to the findings in higher vertebrates.  相似文献   

19.
The distribution of interstitial collagen types I and III was studied by immunocytochemistry in the mesenchyme of progressing and regressing mesonephric and paramesonephric ducts of male and female rat fetuses from the age of 15 days until birth. Immunocytochemistry revealed a collagen-poor mesenchymal area around the genital ducts and in continuation with the coelomic epithelium on the lateral edge of the mesonephric ridge of 15-day-old fetuses. Ultrastructurally, collagen fibrils were accumulated along the continuous lamina densa of the mesonephric ducts, whereas they were absent on the medial side of the male and female paramesonephric ducts. In males, the amount of collagen fibrils increased with the histological maturation of the mesenchyme around the mesonephric duct, whereas around the regressing paramesonephric duct collagens disappeared from the basement membrane region and the surrounding mesenchyme of the 16-day-old male duct. After the completion of the paramesonephric regression, the mesenchyme acquired a uniformly collagen containing interstitial matrix. In females, the collagens increased in the mesenchyme around the progressing paramesonephric duct, and the original site of the regressing mesonephric duct became occupied with a collagen-containing mesenchyme by the age of 19 days. The results suggest a close structural linkage between the mesonephric duct and the established early paramesonephric duct. The differences in the developmental maturation of the periductal mesenchyme and the observed changes in the composition of the interstitial matrix probably reflect the functional differences in the regulatory factors acting on the progression and regression of the male and female genital ducts.  相似文献   

20.
We have studied the degradation of type X collagen by human skin fibroblast and rat uterus interstitial collagenases and human 72-kDa type IV collagenase. The interstitial collagenases attacked the native type X helix at two loci, cleaving residues Gly92-Leu93 and Gly420-Ile421, both scissions involving Gly-X bonds of Gly-X-Y-Z-A sequences. However, the human and rat interstitial enzymes displayed an opposite and substantial selectivity for each of these potential sites, with the uterine enzyme catalyzing the Gly420-Ile421 cleavage almost 20-fold faster than the Gly92-Leu93 locus. Values for enzyme-substrate affinity were approximately 1 microM indistinguishable from the corresponding Km values against type I collagen. Interestingly, in attacking type X collagen, both enzymes manifested kinetic properties intermediate between those characterizing the degradation of native and denatured collagen substrates. Thus, energy dependence of reaction velocity revealed a value of EA of 45 kcal, typical of native interstitial collagen substrates. However, the substitution of D2O for H2O in solvent buffer failed to slow type X collagenolysis significantly (kH/kD = 1.1), in contrast to the 50-70% slowing (kH/kD = 2-3) observed with native interstitial collagens. Since this lack of deuterium isotope effect is characteristic of interstitial collagenase cleavage of denatured collagens, we investigated the capacity of another metalloproteinase with substantial gelatinolytic activity, 72-kDa type IV collagenase, to degrade type X collagen. The 72-kDa type IV collagenase cleaved type X collagen at both 25 and 37 degrees C, and at loci in close proximity to those attacked by the interstitial enzymes. No further cleavages were observed at either temperature with type IV collagenase, and although values for kcat were not determined (due to associated tissue inhibitor of metalloproteinases-2), catalytic rates appeared to be substantial in comparison to the interstitial enzymes. In contrast, type X collagen was completely resistant to proteolysis by stromelysin. Type X collagen thus appears to be highly unusual in its susceptibility to degradation by both interstitial collagenase and another member of the metalloproteinase gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号