首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here experiments which determine at which stage in the lipid A biosynthesis the polar head groups 4-aminoarabinose, phosphorylethanolamine and 3-deoxy-D-manno-octulosonic acid are transferred to the diphosphorylated glucosamine backbone of the lipid A structure. Use was made of a conditional lethal mutant of Salmonella typhimurium (Ts1) which is defective in the synthesis of 3-deoxy-D-manno-octulosonic acid 8-phosphate and accumulates under nonpermissive conditions an underacylated lipid A intermediate [Lehmann, Rupprecht and Osborn (1977) Eur. J. Biochem. 76, 41-49]. Pulse-chase experiments, including a detailed analysis of radioactive pulse and chase products, demonstrated that this underacylated compound is a key intermediate in the lipid A synthesis. It can serve as direct acceptor for the incorporation of the polar head groups 4-aminoarabinose, phosphorylethanolamine and 3-deoxy-D-manno-octulosonic acid. On the basis of these findings some steps in the sequence of reactions involved in the lipid A biosynthesis are proposed.  相似文献   

2.
Free flow electrophoresis was shown to be a useful tool to enrich for mutants conditionally defective in lipid A synthesis. The method was based on the observation that electrophoretic mobility of bacterial cells is dependent on the structure of lipopolysaccharides and is influenced by lesions in the synthesis of the O-specific chains as well as by lesion in the synthesis of the complete 3-deoxy-D-manno-octulosonic acid (dOclA) lipid A region. Using this procedure a new mutant conditionally defective in dOclA-8-P synthesis was isolated (mutant Ts5). Following a shift to nonpermissive conditions it accumulates a mixture of at least two equally represented lipid A precursor structures. One is made up of glucosamine, phosphate and 3-hydroxymyristic acid in a molar ratio 1.0:1.0:2.0 and lacks dOclA and the nonhydroxylated fatty acids lauric, myristic and palmitic acid. The precursor preparation derived from mutant Ts5 thus differs from previously described lipid A intermediates by the relatively high substitution by palmitic acid. The implications of the above findings to the biosynthesis of lipid A are discussed.  相似文献   

3.
Incomplete lipid A has been purified from a mutant of Salmonella typhimurium which is temperature-sensitive both in synthesis of 3-deoxy-D-manno-octulosonic acid 8-phosphate (dOclA-8-P) and in growth. Pulse-chase experiments have shown that the incomplete lipid A molecule is the intermediate in the biosynthesis of the dOclA-lipid A portion of lipopolysaccharides. The purification procedure included DEAE-cellulose chromatography and electrodialysis. A highly water-soluble precursor material was obtained, consisting of glucosamine, phosphate and 3-hydroxymyristic acid in a molar ratio of 1:1.2:2.1. Labeling experiments as well as chemical degradation procedures revealed the precursor molecule to be composed of a diphosphorylated glucosamine-disaccharide carrying two amide-linked and two ester-linked 3-hydroxymyristic acids. In contrast to the complete dOclA-lipid A part, the intermediate lacks 3-deoxy-D-manno-octulosonic acid as well as nonhydroxylated fatty acids. On the basis of these findings a pathway for the final steps in dOclA-lipid A biosynthesis is proposed.  相似文献   

4.
The present paper describes the isolation and characterization of a mutant (mutant Ts7) of Salmonella typhimurium that is conditionally defective in the incorporation of dodecanoic and tetradecanoic acid into lipopolysaccharide precursor structures. Enrichment of mutant Ts7 was achieved by free-flow electrophoresis and was based on a previous observation that at least some Salmonella mutants conditionally blocked in the synthesis of the 3-deoxy-D-manno-octulosonic acid (dOc1A)-lipid-A region exhibit higher electrophoretic mobilities than cells with intact dOc1A-lipid-A regions. Under nonpermissive conditions (42 degrees C) mutant Ts7 accumulates at least two incomplete dOc1A-lipid-A structures. One is made up of glucosamine, phosphate, dOc1A, and 3-hydroxytetradecanoic acid in a molar ratio 1.0:1.3:1.0:2.2 and is devoid of dodecanoic and tetradecanoic acid. The other structure has the same basic structure but contains hexadecanoic acid.  相似文献   

5.
A procedure is described for the selection of conditional 3-deoxy-D-manno-octulosonic-acid--Lipid A mutants which depends on temperature sensitivity for both synthesis of complete lipopolysaccharide and for growth. Using this procedure new types of mutants were isolated which cease growth and accumulate lipid A precursors following a shift to nonpermissive temperatures. All precursor molecules differ in their charge as judged by DEAE-cellulose chromatography. While they all contain glucosamine, phosphate and 3-hydroxymyristic acid, they lack detectable 3-deoxy-D-manno-octulosonic acid (dOclA) as well as the nonhydroxylated fatty acids of the complete lipid A structure. Three mutants proved to be conditionally defective in dOclA metabolism, whereas one seems to be blocked at a relatively early step in lipid A synthesis. The phenotypes of all these mutants appear to be due to single mutations by reversion analysis and by characterization of the temperature-resistant revertants. Studies of these mutants may shed light on the essential role of the complete dOclA--lipid A part of lipopolysaccharides in membrane function.  相似文献   

6.
Five temperature-sensitive mutants of simian virus 40 containing two temperature-sensitive mutations were isolated. The double mutant of the A and D complementation groups, like the D mutants, failed to complement by conventional complementation analysis and did not induce host DNA synthesis at 40 degrees C. However, under conditions that suppressed the D defect, the A:D double mutant expressed only the A defect. Thus, viral DNA replication dropped rapidly after this mutant was shifted from permissive to restrictive temperatures. The A:D double mutant failed to transfrom at the restrictive temperature when subconfluent Chinese hamster lung monolayers were used. Double mutants of A:B, A:C, and A:BC complementation groups, like their A parent, were defective in viral DNA replication, in the induction of host DNA synthesis and in the transformation of secondary Chinese hamster lung cells at the nonpermissive temperature.  相似文献   

7.
Investigation of 15 poliovirus temperature-sensitive (ts) mutants by using physiological tests [formation of virus-specific antigen and ribonucleic acid (RNA) under nonpermissive conditions] permitted us to divide them into three groups. From each group, one mutant was selected (ts 2, 5, 11), and a comparative study of poliovirus-related particle (5, 10, 73, and 150S) formation under permissive (36 C) and nonpermissive (40 C) conditions was carried out. The ts 2 and ts 11 are mutants with greatly reduced RNA synthesis which at 40 C produce particles with a sedimentation constant of 5S, and the ts 5 (RNA(+)) mutant produces both 5 and 10S particles. The relationship between different temperature-sensitive defects in the mutants is discussed. The results obtained indicate a possible role of 5S protein structures in morphogenesis of poliovirus.  相似文献   

8.
Acyl carrier proteins (ACPs) are very small acidic proteins that play a key role in fatty acid and complex lipid synthesis. Moreover, recent data indicate that the acyl carrier protein of Escherichia coli has a large protein interaction network that extends beyond lipid synthesis. Despite extensive efforts over many years, no temperature-sensitive mutants with mutations in the structural gene (acpP) that encodes ACP have been isolated. We report the isolation of three such mutants by a new approach that utilizes error-prone PCR mutagenesis, overlap extension PCR, and phage lambda Red-mediated homologous recombination and that should be generally applicable. These mutants plus other experiments demonstrate that ACP function is essential for the growth of E. coli. Each of the mutants was efficiently modified with the phosphopantetheinyl moiety essential for the function of ACP in lipid synthesis, and thus lack of function at the nonpermissive temperature cannot be attributed to a lack of prosthetic group attachment. All of the mutant proteins were largely stable at the nonpermissive temperature except the A68T/N73D mutant protein. Fatty acid synthesis in strains that carried the D38V or A68T/N73D mutations was inhibited upon a shift to the nonpermissive temperature and in the latter case declined to a small percentage of the rate of the wild-type strain.  相似文献   

9.
A new Escherichia coli deoxyribonucleic acid (DNA) ligase mutant has been identified among a collection of temperature-sensitive DNA replication mutants isolated recently (Sevastopoulos, Wehr, and Glaser, Proc. Natl. Acad. Sci. U.S.A. 74:3485-3489, 1977). At the nonpermissive temperature DNA synthesis in the mutant stops rapidly, the DNA is degraded to acid-soluble material, and cell death ensures. This suggests that the mutant may be among the most ligase-deficient strains yet characterized.  相似文献   

10.
Many temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein. In the present study, this mutant was further studied as a possible tool to establish the role of the putative λ1 enzymatic activities in viral multiplication. It was observed that synthesis of viral proteins is only marginally reduced, while it was difficult to recover viral particles at the nonpermissive temperature. A single nucleotide substitution resulting in an amino acid change was found; the position of this amino acid is consistent with a probable defect in assembly of the inner capsid at the nonpermissive temperature.  相似文献   

11.
plsA mutants of Escherichia coli are temperature-sensitive strains which possess two enzymes of abnormal thermolability, sn-glycerol 3-phosphate acyltransferase and adenylate kinase. Phospholipid synthesis is inhibited after shift of plsA mutants to temperatures at the lower end of the nonpermissive temperature range. This inhibition is not due to inactivation of the adenylate kinase activity since nucleic acid (and hence adenosine 5'-triphosphate) synthesis is inhibited only slightly. These results show that in vivo inactivation of the sn-glycerol 3-phosphate acyltransferase can be observed under conditions which allow normal adenylate kinase function.  相似文献   

12.
FabG, beta-ketoacyl-acyl carrier protein (ACP) reductase, performs the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. We report the first documented fabG mutants and their characterization. By chemical mutagenesis followed by a tritium suicide procedure, we obtained three conditionally lethal temperature-sensitive fabG mutants. The Escherichia coli [fabG (Ts)] mutant contains two point mutations: A154T and E233K. The beta-ketoacyl-ACP reductase activity of this mutant was extremely thermolabile, and the rate of fatty acid synthesis measured in vivo was inhibited upon shift to the nonpermissive temperature. Moreover, synthesis of the acyl-ACP intermediates of the pathway was inhibited upon shift of mutant cultures to the nonpermissive temperature, indicating blockage of the synthetic cycle. Similar results were observed for in vitro fatty acid synthesis. Complementation analysis revealed that only the E233K mutation was required to give the temperature-sensitive growth phenotype. In the two Salmonella enterica serovar Typhimurium fabG(Ts) mutants one strain had a single point mutation, S224F, whereas the second strain contained two mutations (M125I and A223T). All of the altered residues of the FabG mutant proteins are located on or near the twofold axes of symmetry at the dimer interfaces in this homotetrameric protein, suggesting that the quaternary structures of the mutant FabG proteins may be disrupted at the nonpermissive temperature.  相似文献   

13.
A temperature-sensitive mutant of Salmonella typhimurium LT2 was isolated. At the nonpermissive temperature cell division stopped and multinucleated filaments were formed. DNA, RNA, or protein synthesis was not affected until after about two generations. Different physiological conditions, such as anaerobiosis and different growth media, suppress the division deficiency at high temperatures. Certain mutations causing a reduced polypeptide chain elongation rate also suppress the division deficiency. The mutation is recessive and shown to be in the structural gene for release factor I (prfA). DNA sequencing of both the wild-type (prfA+) and mutant (prfA101) allele revealed a GC-to-AT transition in codon 168. Like other known prfA mutants, prfA101 can suppress amber mutations. The division defect in the prfA101 mutant strain could not be suppressed by overexpression of the ftsQAZ operon. Moreover, at the nonpermissive temperature the mutant shows a normal heat shock and SOS response and has a normal ppGpp level. We conclude that the prfA101-mediated defect in cell division is not directed through any of these metabolic pathways, which are all known to affect cell division. We speculate that the altered release factor I induces aberrant synthesis of an unidentified protein(s) involved in the elaborate process of septation.  相似文献   

14.
A temperature-sensitive mutant of Saccharomyces cerevisiae (DAM303) is described that exhibits an early defect in lipid biosynthesis at the restrictive growth temperature, 37 degrees C. This strain rapidly lost viability after 1 h of incubation at 37 degrees C, and this was accompanied by a significantly reduced incorporation of 32Pi into cellular lipid and an accumulation of [1-14C]acetate into the free fatty acid fraction. The temperature-sensitive DAM303 mutation failed to complement the sec13 mutation described by Novick et al. (Cell 21:205-215, 1980), and from analysis of invertase secretion in the temperature-sensitive DAM303 strain, it is clear that the loss of invertase secretion in the mutant occurs after the loss of phospholipid synthesis. Although the precise nature of the temperature-sensitive lesion in the DAM303 strain has still to be identified, the results from the study of this mutant indicate that a defect in lipid biosynthesis can be correlated with subsequent alterations in extracellular protein secretion and loss of other macromolecular functions including DNA, RNA, and protein syntheses. From studies of this mutant, two procedures of enriching for other temperature-sensitive mutants with defects in lipid biosynthesis have emerged: inositol overproduction and screening for increased buoyant densities.  相似文献   

15.
The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed.  相似文献   

16.
A single site mutant of Bacillus subtilis with a streptovaricin-resistant RNA polymerase has been isolated; this mutation caused temperature-sensitive sporulation, but had no effect on vegetative growth. The mutant (ts710) temperature-sensitive period irreversibly affected the middle and late stages of sporulation. Mutant cells grown at the nonpermissive temperature exhibited abnormal serine protease accumulation, serine esterase accumulation, alkaline phosphatase accumulation, RNA polymerase template specificity changes, and pulse-labeled RNA synthesis profiles. The accumulation of metal protease was not affected at the nonpermissive temperature. Attempts to isolate single site mutants which were streptolydigin-resistant, and temperature-sensitive for sporulation, were unsuccessful.  相似文献   

17.
Role of the ø11 Phage Genome in Competence of Staphylococcus aureus   总被引:13,自引:8,他引:5       下载免费PDF全文
Both phage ?11 and 83A, when present as prophage or when used as helper phage, induce competence for transfection and transformation to the same level in Staphylococcus aureus, strain 8325-4. Cells lysogenized with certain temperature-sensitive (ts) mutants of phage ?11 show competence at the nonpermissive temperature (41 C) without production of infectious phages. Phage ?11ts allele 31 can neither as a prophage nor as a helper phage develop competence under nonpermissive conditions. This mutant appears, therefore, to be mutated in the region of the phage genome controlling competence. The competence level for both transfection and transformation is increased by superinfecting strain 8325-4 (?11) or 8325-4 (83A) at high multiplicities with phage ?11 with some of its mutants or with phage 83A. This superinfection enhancement appears to require protein synthesis but not deoxyribonucleic acid synthesis as judged from studies with inhibitors of macromolecular synthesis. Besides the phage particle, no extracellular or cell-bound factors so far detected can induce competence. The phage-induced product conferring competence is rapidly synthesized by strain 8325-4 (ts?11(31)) after shift to permissive conditions, but requires deoxyribonucleic acid and protein synthesis to be expressed. Recombination between the sus mutants of phage ?11 of Kretschmer and Egan and ts?11(31) indicate that competence is controlled by an early gene in the lytic cycle which may be expressed also in lysogenic cells. The phage product inducing competence appears to have a half-life of 10 to 15 min in the conditional lethal mutant at shift to nonpermissive temperature. Ultraviolet inactivation of phage ?11 infectivity occurs more rapidly than inactivation of competence induction. In fact, the number of transformants is increased at low doses of irradiation. Competence induction is, however, decreased at high does of ultraviolet irradiation.  相似文献   

18.
Ishii K  Moss B 《Journal of virology》2001,75(4):1656-1663
Previous analyses of randomly generated, temperature-sensitive vaccinia virus mutants led to the mapping of DNA synthesis negative complementation groups to the B1R, D4R, D5R, and E9L genes. Evidence from the yeast two-hybrid system that the D4R and D5R proteins can interact with the A20R protein suggested that A20R was also involved in DNA replication. We found that the A20R gene was transcribed early after infection, consistent with such a role. To investigate the function of the A20R protein, targeted mutations were made by substituting alanines for charged amino acids occurring in 11 different clusters. Four mutants were not isolated, suggesting that they were lethal, two mutants exhibited no temperature sensitivity, two mutants exhibited partial temperature sensitivity, and two mutants formed no plaques or infectious virus at 39 degrees C. The two mutants with stringent phenotypes were further characterized. Temperature shift-up experiments indicated that the crucial period was between 6 and 12 h after infection, making it unlikely that the defect was in virus entry, early gene expression, or a late stage of virus assembly. Similar patterns of metabolically labeled viral early proteins were detected at permissive and nonpermissive temperatures, but one mutant showed an absence of late proteins under the latter conditions. Moreover, no viral DNA synthesis was detected when cells were infected with either stringent mutant at 39 degrees C. The previous yeast two-hybrid analysis together with the present characterization of A20R temperature-sensitive mutants suggested that the A20R, D4R, and D5R proteins are components of a multiprotein DNA replication complex.  相似文献   

19.
To isolate new types of vesicular stomatitis virus (VSV) mutants, a four-stage screen was developed which identifies and characterizes mutants capable of complementing the defect in the VSV temperature-sensitive mutant tsG11. Two types of mutants of VSV, Indiana serotype, have been found by using the screen; they are new temperature-sensitive mutants which are, of necessity, not in complementation group I and mutants which do not produce plaques under conditions of single infection at 31 C (the normal permissive temperature) and are, therefore, called complementation-dependent mutants. The newly isolated, temperature-sensitive mutants fall into three complementation groups, two of which are congruent with known complementation groups; the newly identified group extends to six the number of complementation groups of VSV Indiana. The nature of the complementation-dependent mutants has not been established, but one was shown to not contain a significant deletion in its nucleic acid.  相似文献   

20.
Although rare, a recessive temperature-sensitive calmodulin mutant has been isolated in Saccharomyces cerevisiae. The mutant carries two mutations in CMD1, isoleucine 100 is changed to asparagine and glutamic acid 104 is changed to valine. Neither mutation alone conferred temperature sensitivity. A single mutation that allowed production of an intact but defective protein was not identified. At the nonpermissive temperature, the temperature-sensitive mutant displayed multiple defects. Bud formation and growth was delayed, but this defect was not responsible for the temperature-sensitive lethality. Cells synchronized in G1 progressed through the cell cycle and retained viability until the movement of the nucleus to the neck between the mother cell and the large bud. After nuclear movement, less than 5% of the cells survived the first mitosis and could form colonies when returned to permissive conditions. The duplicated DNA was dispersed along the spindle, extending from mother to daughter cell. Cells synchronized in G2/M lost viability immediately upon the shift to the nonpermissive temperature. At a semipermissive temperature, the mutant showed approximately a 10-fold increase in the rate of chromosome loss compared to a wild-type strain. The mitotic phenotype is very similar to yeast mutants that are defective in chromosome disjunction. The mutant also showed defects in cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号