首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-peptidyl-O-acyl hydroxylamines have proven to be effective and selective mechanism-based inhibitors of serine and cysteine proteases as demonstrated using enzymes with specificities for hydrophobic amino acids at the cleavage site. Here, we report for the first time the inhibition of proteases able to accommodate cationic amino acid side chains in their binding pockets using compounds of this inhibitor class. Trypsin and papain are inactivated by enkephalin-analogue diacyl hydroxylamines in a time-dependent and irreversible manner exhibiting second-order rate constants in the range of 100-1000 M-1.s-1. In contrast, human cerebrospinal fluid dynorphin-converting enzyme (hCSFDCE) is inhibited only moderately by these inhibitors. Mechanistic implications have been derived.  相似文献   

2.
Eleven N-peptidyl-O-aroyl hydroxylamines have been synthesized and their hydrolytic stability, acidity and properties during reaction with dipeptidyl peptidase IV (E.C. 3.4.14.5) investigated. N-peptidyl-O-(4-nitrobenzoyl) hydroxylamines act as irreversible inhibitors of serine proteases. The serine enzyme, dipeptidyl peptidase IV (DP IV), is inactivated by substrate analog derivatives of this class by a suicide inactivation mechanism. During the enzyme reaction of DP IV with the suicide substrates most molecules are hydrolyzed but some irreversibly inactivate the target enzyme. In contrast to porcine pancreatic elastase and thermitase, DP IV exhibits a high ratio for hydrolysis of the compounds versus inhibition during their interaction with the enzyme. Variation of the leaving aroyl residue lowers this ratio. Variation of the substrate analog peptide moieties of the DP IV-inhibitors increases their ability to inhibit the enzyme to a remarkable extent. Possible reaction pathways are discussed.  相似文献   

3.
Oxidation of hydroxylamines to nitroxide spin labels in living cells   总被引:2,自引:0,他引:2  
In the presence of oxygen, cells can oxidize hydroxylamines, which are the products of the reduction of nitroxides in cells, back to nitroxides. Lipid-soluble hydroxylamines are oxidized much more rapidly than water-soluble ones, and most of this oxidation is inactivated by heat or trichloroacetic acid, indicating that the principal mechanism is enzyme-linked. The rates of oxidation of some lipophilic hydroxylamines are comparable to the rates of reduction of the corresponding nitroxides. Hydroxylamines formed by reduction of aqueous soluble nitroxides are not oxidized by cells, except for slight oxidation of some pyrrolidine derivatives. The latter is due to autoxidation. The kinetics of oxidation of reduced lipid-soluble nitroxides are all first-order with respect to hydroxylamines, regardless of the position of the nitroxide group along the carbon backbone, indicating that the oxidation occurs within the membrane. The oxidation of hydroxylamines in cells in inhibited by cyanide but not by antimycin A or SKF-525A. We also describe an effective method to oxidize hydroxylamines and follow this reaction; the method is based on the use of perdeuterated [15N]Tempone.  相似文献   

4.
The antioxidative activity of hydroxylamines was evaluated for the oxidation of tetralin at 61 degrees C and linoleic acid micelles in an aqueous dispersion at 37 degrees C, induced by an azo initiator. The antioxidative efficacy of the hydroxylamines for the oxidation of tetralin was smaller than that of alpha-tocopherol. However, the hydroxylamines showed more potent antioxidative activity than that of the alpha-tocopherol against the oxidation of linoleic acid micelles. On the basis of the results of an ESR study and the oxidation product obtained, it is suggested that active position in hydroxylamines depend not only on hydroxyl hydrogen-atom, but also on the allylic hydrogen atom.  相似文献   

5.
The antioxidative activity of hydroxylamines was evaluated for the oxidation of tetralin at 61°C and linoleic acid micelles in an aqueous dispersion at 37°C, induced by an azo initiator. The antioxidative efficacy of the hydroxylamines for the oxidation of tetralin was smaller than that of α-tocopherol. However, the hydroxylamines showed more potent antioxidative activity than that of the α-tocopherol against the oxidation of linoleic acid micelles. On the basis of the results of an ESR study and the oxidation product obtained, it is suggested that active position in hydroxylamines depend not only on hydroxyl hydrogen-atom, but also on the allylic hydrogen atom.  相似文献   

6.
The biogenic amines spermine, spermidine, and putrescine are essential factors of cell growth and differentiation. To inhibit pyridoxal-5"-phosphate dependent ornithine decarboxylase and pyruvate dependent S-adenosylmethionine decarboxylase, key enzymes of polyamine biosynthesis, a system of substrate-like O-substituted hydroxylamines is suggested. The best of these compounds were active at nanomolar concentrations. High potency and specificity of this type of inhibitors are discussed in terms of structural similarity of E–I and E–S complexes.  相似文献   

7.
Cellular metabolism of proxyl nitroxides and hydroxylamines   总被引:2,自引:0,他引:2  
Previous data from model systems indicated that the proxyl nitroxides should be especially resistant to bioreduction and therefore could be an effective solution to this often problematic characteristic of nitroxides. Therefore, we investigated the rate of reduction by cells and by the usual model system, ascorbate, of four proxyl nitroxides and three reference nitroxides. We found that, while the rate of reduction by ascorbate of the proxyl nitroxides was slower than the rate of a prototypic pyrrolidine nitroxide (PCA), the reverse was true for reduction by cells. We also studied the rate of oxidation of the corresponding hydroxylamines. The rate of oxidation by cells of the proxyl hydroxylamines was relatively fast, especially for the most lipophilic derivative. These results indicate that: (i) proxyl nitroxides may not be unusually resistant to bioreduction by functional biological systems; (ii) accurate knowledge of relative rates of metabolism of nitroxides and hydroxylamines in cells and tissues will require direct studies in these systems because the rates may not closely parallel those observed in model (chemical) systems; and (iii) proxyl nitroxides show potential value as agents to measure oxygen concentrations by the rates of oxidation of their corresponding hydroxylamines.  相似文献   

8.
Effects of oxygen on the metabolism of nitroxide spin labels in cells   总被引:4,自引:0,他引:4  
The products of the reduction of nitroxides in cells are the corresponding hydroxylamines, which cells can oxidize back to the nitroxides in the presence of oxygen. Both the reduction of nitroxides and the oxidation of hydroxylamines are enzyme-mediated processes. For lipid-soluble nitroxides, the rates of reduction are strongly dependent on the intracellular concentration of oxygen; severely hypoxic cells reduce nitroxides more rapidly than cells supplied with oxygen. In contrast, the rates of oxidation of hydroxylamines increase smoothly with increasing intracellular oxygen concentration up to 150 microM. In order to separate the effects on the rates of metabolism of nitroxides due directly to oxygen from effects due to the redox state of enzymes, we studied the cells under conditions in which each of these variables could be changed independently. Oxygen affects the metabolism of these nitroxides primarily by interacting with cytochrome c oxidase to change the redox state of the enzymes in the respiratory chain. Our results are consistent with the conclusions that in these cells reduction of lipophilic nitroxides occurs at the level of ubiquinone in the respiratory chain in mitochondria, and oxidation of the corresponding hydroxylamines occurs at the level of cytochrome c oxidase.  相似文献   

9.
The metabolism of a number of primary and secondary hydroxylamines by hepatic microsomes is described. A cyanide-insensitive, reduced pyridine nucleotide-dependent hydroxylamine reductase activity that is independent of oxygen concentration catalyzes the reduction of hydroxylamine and a number of its mono- and disubstituted derivatives to the parent amines. At the pH optimum of 6.3 for the reductase, NADH is the preferred cofactor. The enzyme does not catalyze the reduction of 4-hydroxyaminoquinoline-1-oxide (HAQO) or of 1- or 2-naphthylhydroxylamine, the only known carcinogenic hydroxylamines tested. A hydroxylamine oxidase activity that requires both oxygen and reduced pyridine nucleotide oxidizes only disubstituted hydroxylamines, and the apparent initial product is the corresponding nitrone. Most nitrones undergo immediate hydrolysis in aqueous solution. At the pH optimum of 7.6 for the oxidase, NADPH is the preferred cofactor. NADPH cannot be replaced by a hydrogen peroxide-generating system, and the reaction is not affected by the addition of large amounts of exogenous catalase. Of the various organs which were assayed, the liver contained the greatest amount of both the reductase and oxidase activities; and the major portion of both activities in liver homogenates was found in the microsomal fraction. The two activities respond differently to agents such as deoxycholate, n-octylamine, and sulfhydryl inhibitors, indicating that the reduction and oxidation of the hydroxylamines are catalyzed by different enzymes or enzyme systems. Both activities are insensitive to carbon monoxide and N,N′-diphenyl-p-phenylenediamine (DPPD), an inhibitor of lipid peroxidation.  相似文献   

10.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

11.
Abstract

The title compound was prepared by reduction of the oxime of the 3′-ketouridine. Condensation with aldehydes gave a series of nitrones whose reduction afforded “second generation” hydroxylamines, some of which showing antiviral activity. The nitroxide free radicals formed upon oxidation of hydroxylamines gave good e.s.r. spectra useful for configurational and conformational assignments.  相似文献   

12.
Hydroxylamines (R-NHOH) and oximes (R = NOH) relax rat aortic rings independent of the presence of the endothelium. The relaxation is inhibited by methylene blue, an inhibitor of soluble guanylate cyclase and by hemoglobin, an inhibitor of the endothelium dependent relaxing factor (EDRF). Both the oximes and hydroxylamines generate NO/NO2- ions on treatment with iodine in glacial acetic acid. However, there is no correlation between relaxation and NO/NO2- formation. Compared to hydroxylamines, the oximes are less potent relaxing agents and not efficiently converted to NO/NO2- ions. We suggest that endothelium dependent relaxation is associated with a hydroxylamine like compound and is not directly related to NO.  相似文献   

13.
A series of N-substituted N-nitrosohydroxylamines including six new compounds were synthesized and examined for inhibition of mushroom tyrosinase. Corresponding hydroxylamines were reacted with n-butyl nitrite to give substituted nitrosohydroxylamines as their ammonium salt. The N-substituted hydroxylamines were prepared from the primary amines via the oxaziridine, or from the carbonyl compounds via the oxime. Most of the nitrosohydroxylamines tested inhibited mushroom tyrosinase. Among them, N-cyclopentyl-N-nitrosohydroxylamine exhibited the most potent activity (IC(50)=0.6 microM), as powerful as that of tropolone, one of the most powerful inhibitors. As removal of nitroso or hydroxyl moiety, the enzyme inhibitory activity was completely diminished. Both N-nitroso group and N-hydroxy group were suggested to be essential for the activity, probably by interacting with the copper ion at the active site of the enzyme. Lineweaver-Burk plotting showed that cupferron was a competitive inhibitor but that N-cyclopentyl-N-nitrosohydroxylamine was not.  相似文献   

14.
Inhibition of lipid peroxidation by nitroxide radicals and their corresponding hydroxylamines was investigated. The nitroxides were either oxazolidines or piperidines, differing in substitution of the backbone of the molecule (a five or six-membered ring structure, respectively). Concentration requirements for 50% inhibition of microsomal lipid peroxidation varied from 340 to 6 microM for the nitroxides, and from 120 to 3 microM for the hydroxylamines, correlating with lipophilicity and chemical structure. Intramembrane concentrations required for 50% inhibition was independent of lipophilicity when peroxidation was initiated with ADP-Fe2+ but increased with lipophilicity when peroxidation was initiated with t-butylhydroperoxide. During studies of the kinetics of the inhibition, two modes were seen: a delay or a decreased rate of the process. The former mode was seen with the more lipophilic inhibitors. The mechanism of inhibition was similar for all nitroxides and consisted of the following three major components: blocking of primary initiation, prevention of secondary (peroxide-dependent) initiation, and scavenging of various lipoid radicals in the membrane, the major mode of action of the hydroxylamines. Inhibitory efficiency was interpreted in terms of steric hindrance, diffusibility, regeneration of inhibitor, and ability to interact with hydrophilic sites in a hydrophobic environment.  相似文献   

15.
The photosensitizer flavin mononucleotide (FMN), in conjunction with the reducing agents diethylenetria-minepentaacetic acid (DTPA), hydrazine and hydroxylamines derived from nitroxides, generates superoxide radicals in a strictly light-dependent reaction in aerobic solution. Addition of superoxide dismutase (SOD) converts this system to a hydrogen peroxide generator. In the presence of horseradish peroxidase the latter system becomes a phenoxyl radical generator with appropriate phenolic substrates. Under anaerobic conditions FMN, hydrogen peroxide and an iron chelate generate ferryl and when this system is combined with dimethylsulfoxide, methyl radicals are produced. All the radicals can be generated with little contamination from other radicals, in high yields and the reaction can be terminated immediately upon cessation of illumination. Useful applications of this photochemical system include ESR studies of transient free radical species.  相似文献   

16.
Cyclic nitroxides demonstrate antioxidative activity in numerous in vitro and in vivo models, which frequently involves the participation of the reduced and oxidized forms of the nitroxide, namely, the hydroxylamine and oxoammonium cation. Generally, cellular reducing equivalents facilitate rapid enzymatic as well as nonenzymatic reduction of nitroxides in the tissue. On the other hand, the reaction of nitroxides with various radicals yields the highly oxidizing oxoammonium cation, which mediates the catalytic effect of nitroxides in selective oxidation of alcohols. Hence, nitroxides might act as both anti- and pro-oxidants. Therefore, the comproportionation reaction between the oxoammonium cation and the hydroxylamine might play a role in lowering the pro-oxidative activity of nitroxides. Although the comproportionation reaction has previously been studied, there is no agreement regarding its kinetic features. We investigated the reaction of the reduced forms of 2,2,6,6-tetramethylpiperidinoxyl (TPO) and 4-OH-2,2,6,6-tetramethylpiperidinoxyl (4-OH-TPO) with the oxoammonium cation derived from TPO at various pHs using rapid-mixing stopped-flow and EPR spectrometry. From the pH dependence of the reaction rate constants we determined the pK(1) of the respective hydroxylamines to be 7.5 and 6.9, respectively. The reduction potentials of the hydroxylamines were determined by cyclic voltammetry, and from their dependence on pH, we obtained the same pK(1) values. The rate constant of the comproportionation reaction does not exceed 20 M(-1) s(-1) in the physiological pH range and, therefore, cannot greatly contribute toward recycling of the nitroxides in the tissue.  相似文献   

17.
Cytochrome P-455 nm complex formation in phenobarbital induced rat liver microsomes was investigated using both an NADPH/O2-dependent monooxygenase system and a peroxygenase/peroxidase system where hydrogen peroxide was substituted for NADPH. The substrates tested were the enantiomers of four 1-alkyl-substituted 2-phenylethanamines (unbranched 1-alkyl substituents, comprising one to four carbons), S(+)- and R(-)-N-hydroxyamphetamine and racemic mixtures of N-hydroxy-1-phenyl-2-butanamine and N-hydroxy-3-methyl-1-phenyl-2-butanamine. During NADPH/O2-dependent metabolism the amines showed a positive correlation between extent of complex formation and lipophilicity; furthermore the S(+)-isomers gave rise to larger amounts of complex than the corresponding R(-)-analogues. With the hydroxylamines the ability to form complexes was greater than with any of the amines but no definite difference was seen among the hydroxylamines. In the peroxygenase system the hydroxylamines still gave larger amounts of complex than the amines but the differences seen within the homologous series of chiral amines when using the monooxygenase system were no longer observed. Although the quantitative trends in complex formation seen in the monooxygenase system were non-existent when H2O2 was substituted for NADPH, mere qualitative rules still seemed to apply; substrates which failed to give the complex during NADPH-dependent metabolism (2-phenylethanamine, phentermine, N-hydroxyphentermine and phenylacetone oxime) were inactive also in the peroxygenase system. The results substantiate the notion that the monooxygenase and peroxygenase reaction mechanisms of cyt. P-450 follow similar but not identical pathways.  相似文献   

18.
Synthetic methods leading to 5'(3')-O-amino nucleosides have been developed in an effort to prepare derivatives that may have antitumor or antiviral activities. They are based on ring opening of O2,5'-cyclonucleosides with the N-protected hydroxylamines and dehydrative coupling of 5'(3')-O-unprotected nucleosides with N-hydroxyphthalimide.  相似文献   

19.
Hydrolysis of DNA is of increasing importance in biotechnology and medicine. In this Letter, we present the DNA-cleavage potential of metal-free hydroxylamines and oximes as new members of nucleic acid cleavage agents.  相似文献   

20.
The affinities of rabbit antibodies directed against the spin-label nitroxide group have been found to be of the order of 106 1/mole for a number of low molecular weight water soluble haptens. It is shown that the same antibodies have almost equal binding affinities to corresponding hydroxylamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号