首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribe Acacieae (Fabaceae: Mimosoideae) contains two genera, the monotypic African Faidherbia and the pantropical Acacia, which comprise about 1200 species with over 950 confined to Australia. As currently recognized, the genus Acacia is subdivided into three subgenera: subg. Acacia, subg. Aculeiferum, and the predominantly Australian subg. Phyllodineae. Morphological studies have suggested the tribe Acacieae and genus Acacia are artificial and have a close affinity to the tribe Ingeae. Based on available data there is no consensus on whether Acacia should be subdivided. Sequence analysis of the chloroplast trnK intron, including the matK coding region and flanking noncoding regions, indicate that neither the tribe Acacieae nor the genus Acacia are monophyletic. Two subgenera are monophyletic; section Filicinae of subgenus Aculeiferum does not group with taxa of the subgenus. Section Filicinae, eight Ingeae genera, and Faidherbia form a weakly supported paraphyletic grade with respect to subg. Phyllodineae. Acacia subg. Aculeiferum (s. s.) is sister to the grade. These data suggest that characters currently used to differentiate taxa at the tribal, generic, and subgeneric levels are polymorphic and homoplasious in cladistic analyses.  相似文献   

2.
Vigna radiata seedlings germinated in the presence of Mn2+ show an unusual increase in allantoinase activity which is proportional to Mn2+ concentration up to 5 mM. Though Mn2+ is not an activator for V. radiata allantoinase, it specifically protects allantoinase against thermal as well as papain-catalysed inactivation. Evidence is presented to show that the primary effect of Mn2+ is a protective one, both in vitro and in vivo, and that this is reflected in the observed enhancement of allantoinase activity in Mn2+ grown seedlings. That this unusual effect of Mn2+ is a specific one is indicated by the lack of a similar effect with Mg2+. Cu2+ is shown to destabilize V. radiata allantoinase in vitro as well as in vivo.  相似文献   

3.
A molecular phylogenetic study of Plantago L. (Plantaginaceae) analysed nucleotide variation in the internal transcribed spacers (ITS) of nuclear ribosomal and plastid trnL-F regions. Included are 57 Plantago species, with two Aragoa species as the ingroup and three Veronica species as the outgroup. Phylogenetic analysis using maximum parsimony identified five major clades, corresponding to the taxonomic groups Plantago subgenera Plantago, Coronopus, Psyllium, Littorella and Bougueria . Aragoa is sister to genus Plantago . Plantago subgenus Littorella is sister to the other subgenera of Plantago . The results are in general correlated with a morphological phylogenetic study and iridoid glucoside patterns, but Plantago subgenus Albicans is paraphyletic and should be included in Plantago subgenus Psyllium sensu lato to obtain a monophyletic clade with six sections. Plantago section Hymenopsyllium is more closely related to section Gnaphaloides than to section Albicans . Plantago subgenus Bougueria is sister to subgenus Psyllium s.l. section Coronopus in Plantago subgenus Coronopus is subdivided in two series. Only some of the sections can be resolved into series. DNA variation within genus Plantago is high, a result that would not have been predicted on the basis of morphology, which is relatively stereotyped. If we calibrate a molecular clock based on the divergence of P. stauntoni , endemic to New Amsterdam in the southern Indian Ocean, we calculate the time of the split between Plantago and Aragoa to be 7.1 million years ago, which is congruent with the fossil record.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 323–338.  相似文献   

4.
A cladistic study of Anllastrum, Angophora and Eucalyptus (Myrtaceae). Transformed cladistic; character compatibility; branch and bound, and Farris-Wagner methods gave similar solutions in a cladistic study of Arillastrum, Angophora and Eucalyptus. These analyses, based on morphological characters, indicate that Eucalyptus is a monophyletic group and that its sister taxon is Angophora.
Within Eucalyptus , subgenera Blakella and Corymbia are sister taxa to all other groups; subgenera Monocalyptus, Idiogenes and Gaubaea form a monophyletic group with subgenus Monocalyptus sister to subgenera Idiogenes and Gaubaea ; subgenera Symphyomyrtus and Telocalyptus together also form a monophyletic group and, with Eucalyptus similis (subgenus Eudesmia group 4), are sister to the Monocalyptus group. Eucalyptus subgenus Telocalyptus (4 species), Eucalyptus subgenus Idiogenes (1 species) and Eucalyptus subgenus Gaubaea (2 species) should not be recognized as subgenera and some individual species need further examination. Eucalyptus subgenus Eudesmia is a paraphyletic group.
Some characters are identified as parallelisms, e.g. axillary inflorescences, sepaline operculum, bristle glands, and clustered anthers. A more congruent interpretation of the single operculum of Eucalyptus subgenus Monocalyptus as at least partly petaline rather than solely sepaline in origin is suggested.
The area relationships for the taxa are concordant with those derived from geological and climatological information. New Caledonia is sister area to Australia, and within Australia southwestern Australia is sister area to south-eastern and north-eastern Australia.  相似文献   

5.
Snubnose darters comprise one of the largest subgenera of the percid genus Etheostoma. Many species are described based on differences in male breeding coloration. Few morphological synapomorphies have been proposed for the subgenus and their relatives, making it difficult to delineate monophyletic clades. The phylogenetic relationships of the 20 snubnose darter species of the subgenus Ulocentra and 11 members of its proposed sister subgenus Etheostoma were investigated with partial mitochondrial DNA sequences including 1033 bp encompassing the entire mitochondrial control region, the tRNA-Phe gene, and part of the 12S rRNA gene. Two hypotheses on the relationship and monophyly of the two subgenera were evaluated. Both maximum-parsimony and neighbor-joining analyses supported monophyly of the subgenus Ulocentra and resolved some species-level relationships. The banded darter, E. zonale, and its sister taxon, E. lynceum, were not closely related to the snubnose darters and appear to be diverged from the other members of the subgenus Etheostoma, fitting their former distinction as the recognized subgenus Nanostoma. The sister group to Ulocentra appears to be a restricted species assemblage within the subgenus Etheostoma containing E. blennioides, E. rupestre, E. blennius, and the E. thalassinum species group. The placement of the harlequin darter, E. histrio, is problematic, and it may represent a basal member of Ulocentra or of the restricted subgenus Etheostoma. Despite recent estimates of divergence times between nominal Ulocentra taxa, each species exhibits its own unique set of mtDNA haplotypes, providing no direct evidence for current genetic exchange between species. The nominal taxa of snubnose darters thus appear to be evolving independently from each other and therefore constitute valid species under the Phylogenetic Species Concept.  相似文献   

6.
Symplocos comprises ~300 species of woody flowering plants with a disjunct distribution between the warm-temperate to tropical regions of eastern Asia and the Americas. Phylogenetic analyses of 111 species of Symplocos based on the nuclear ribosomal internal transcribed spacer (ITS) region and the chloroplast genes rpl16, matK, and trnL-trnF yielded topologies in which only one of the four traditionally recognized subgenera (Epigenia; Neotropics) is monophyletic. Section Cordyloblaste (subgenus Symplocos; eastern Asia) is monophyletic and sister to a group comprising all other samples of Symplocos. Section Palura (subgenus Hopea; eastern Asia) is sister to a group comprising all other samples of Symplocos except those of section Cordyloblaste. Symplocos wikstroemiifolia (eastern Asia) and S. tinctoria (southeastern United States), both of subgenus Hopea, form a clade that groups with S. longipes (tropical North America) and the species of subgenus Epigenia. The remaining samples of subgenus Hopea (eastern Asia) form a clade. Section Neosymplocos (subgenus Microsymplocos; Neotropics) is well nested within a clade otherwise comprising the samples of section Symplocastrum (subgenus Symplocos; Neotropics). Section Urbaniocharis (subgenus Microsymplocos; Antilles) groups as sister to the clade comprising Symplocastrum and Neosymplocos. The data support the independent evolution of deciduousness among section Palura and S. tinctoria. The early initial divergence of sections Cordyloblaste and Palura from the main group warrants their recognition at taxonomic levels higher than those at which they are currently placed. An inferred eastern Asian origin for Symplocos with subsequent dispersal to the Americas is consistent with patterns from other phylogenetic studies of eastern Asian-American disjunct plant groups but contrary to a North American origin inferred from the earliest fossil occurrences of the genus.  相似文献   

7.
BACKGROUND AND AIMS: Boragineae is one of the main tribes of Boraginaceae, but delimitation and intergeneric classification of this group are unclear and have not yet been studied using DNA sequences. In particular, phylogenetic relationships in Anchusa s.l. still need to be elucidated in order to assess its taxonomic boundaries with respect to the controversial segregate genera Hormuzakia, Gastrocotyle, Phyllocara and Cynoglottis. METHODS: Phylogenetic relationships among 51 taxa of tribe Boragineae were investigated by comparative sequencing of the trnL(UAA) intron of the plastid genome and of the ITS1 region of the nuclear ribosomal DNA. Exemplar taxa from 16 genera of Boragineae and all subgenera of Anchusa s.l. were included, along with two selected outgroups from tribes Lithospermeae and Cynoglosseae. KEY RESULTS: Phylogenies generated by maximum parsimony and combined ITS1-trnL sequences support the monophyly of the tribe and a split into two clades, Pentaglottis and the remainder of Boragineae. The latter contains two large monophyletic groups. The first consists of three moderately to well-supported branches, Borago-Symphytum, Pulmonaria-Nonea and Brunnera. In the Pulmonaria-Nonea subclade, the rare endemic Paraskevia cesatiana is sister to Pulmonaria, and Nonea appears to be paraphyletic with respect to Elizaldia. The second main group corresponds to the well-supported clade of Anchusa s.l., with the megaphyllic, polyploid herb Trachystemon orientalis as sister taxon, although with low support. Anchusa s.l. is highly paraphyletic to its segregate genera and falls into four subclades: (1) Phyllocara, Hormuzakia, Anchusa subgenus Buglossum and A. subgenus Buglossoides; (2) Gastrocotyle; (3) A. subgenus Buglossellum and Cynoglottis; and (4) A. subgenus Anchusa, Lycopsis and Anchusella. All species of Anchusa subg. Anchusa, including the South African A. capensis, are included in a single unresolved clade. Anchusa subgenus Limbata is also included here despite marked divergence in floral morphology. The low nucleotide variation of ITS1 suggests a recent partly adaptive radiation within this group. CONCLUSIONS: Molecular data show that nine of the usually accepted genera of the Boragineae consisting of two or more species are monophyletic: Anchusella, Borago, Brunnera, Cynoglottis, Gastrocotyle, Hormuzakia, Nonea, Pulmonaria and Symphytum. In addition, the tribe includes the four monotypic genera Paraskevia, Pentaglottis, Phyllocara and Trachystemon. The morphologically well-characterized segregate genera in Anchusa s.l. are all confirmed by DNA sequences and should be definitively accepted. Most of the traditionally recognized subgenera of Anchusa are also supported as monophyletic groups by both nuclear and plastid sequence data. In order to bring taxonomy in line with phylogeny, the institution of new, independent generic entities for subgenera Buglossum, Buglossellum and Buglossoides and a narrower but more natural concept of Anchusa are advocated.  相似文献   

8.
The olive genus Olea includes c. 30–40 taxa in three subgenera (Olea, Tetrapilus, and Paniculatae) within the family Oleaceae. Historically, the Olea genus was classified into four groups that were overall well supported by reconstructed phylogenies, despite incomplete sampling of subgenus Tetrapilus and poor resolution within clades. These analyses also showed that the genus was not monophyletic. Reliable identification of Olea species is important for both their conservation and utilization of this economically important genus. In this study, we used phylogenomic data from genome skimming to resolve relationships within Olea and to identify molecular markers for species identification. We assembled the complete plastomes, and nrDNA of 26 individuals representing 13 species using next-generation sequencing and added 18 publicly available accessions of Olea. We also developed nuclear SNPs using the genome skimming data to infer the phylogenetic relationships of Olea. Large-scale phylogenomic analyses of 138 samples of tribe Oleeae supported the polyphyly of Olea, with Olea caudatilimba and Olea subgenus Tetrapilus not sharing their most recent common ancestor with the main Olea clade (subgenus Paniculatae and subgenus Olea). The interspecific phylogenetic resolution was poor owing to a possible rapid radiation. By comparing with the plastome data, we identified the markers ycf1b and psbE-petL as the best Olea-specific chloroplast DNA barcodes. Compared with universal barcodes, specific DNA barcodes and super-barcode exhibited higher discriminatory power. Our results demonstrated the power of phylogenomics to improve phylogenetic relationships of intricate groups and provided new insights into barcodes that allow for accurate identification of Olea species.  相似文献   

9.
 Chloroplast DNA of 22 species of Acacia (Tourn.) Miller was digested with ten restriction endonucleases, Southern-blotted and probed with cloned fragments covering the chloroplast genome of tobacco (Nicotiana tabacum L.). Phyletic and phenetic analyses of the resulting 176 polymorphic bands recorded among the 22 species were performed. The phylogram was reconstructed using heuristic search and Wagner parsimony. The resulting most parsimonious consensus phylogram displayed three major phyletic lineages, consistent with the previously established three subgenera of Acacia. The 10 species of subgenus Acacia and the 6 species of subgenus Heterophyllum formed two monophyletic sister clades. The 5 species of subgenus Aculeiferum studied and Acacia albida (Syn. Faidherbia albida) grouped together and were basal to the clades of subgenera Acacia and Heterophyllum. The phylogram indicated that subgenus Heterophyllum diverged earlier from subgenus Aculeiferum than did subgenus Acacia; however, the phenogram indicated the reverse. The study indicated that A. nilotica and A. farnesiana are sister species, though A. nilotica is Afro-Asiatic and A. farnesiana is American. The phenogram separated the three subgenera in agreement with the phylogram, but the two dendrograms differed regarding the topologies of the species and the distance of evolution between subgenera Acacia and Heterophyllum. Received: 8 July 1998 / Accepted: 24 July 1998  相似文献   

10.
Comparative electrophoretic phenotypes of 18 of the 32 species of the lizard genus Varanus have been determined for four proteins. The animals studied were representative of species from Africa, Israel, Southeast Asia and Australia. Malate dehydrogenase (A2) exhibited a single phenotype throughout. Lactate dehydrogenase (B4) showed four distinctive electrophoretic forms which grouped the various subgenera as follows: (1) Polydaedalus, Empagusia (African); (2) Psammosaurus (Israel); (3) three species of Varanus, V. gouldii, V. spenceri, V. mertensi (Australian); (4) Dendrovaranus, Indovaranus (Southeast Asian), other Varanus species, Odatria (Australian). Electrophoretic and previously reported karyotypic data were used to interpret the phylogenetic relationships as well as the mode and direction of evolution of these animals. In particular, the results questioned the reality of the subgenus Varanus as a taxonomic unit, since four distinct karyotypic forms and two LDH-B4 phenotypes were observed for these animals, of which one belongs to another subgenus. Serum albumin and carbonic anhydrase phenotypes were of little use in deciding phenotypic groupings.  相似文献   

11.
Three cultivars differing in their susceptibility to water stress were compared—Phaseolus vulgaris cv. Carioca (susceptible), Vigna unguiculata cv. IT83D (intermediately tolerant) and V. unguiculata cv. EPACE-1 (tolerant)—during an imposed water stress treatment. Variation in leaf gas exchange (i.e. assimilation and stomatal conductance) and leaf relative water content in response to progressive substrate water depletion were investigated. To verify the extent of the injury caused by the drought treatment, leaf gas exchange was measured after rehydration. In the three cultivars, stomatal conductance declined before leaf relative water content was affected. P. vulgaris showed the largest decrease in the rate of stomatal conductance with decreasing substrate water content compared to both V. unguiculata cultivars. Photosynthetic assimilation rates were largely dependent on stomatal aperture, but there was evidence of the participation of non-stomatal factors in the reduction of CO2 fixation. The response of leaf gas exchange parameters to severe water stress conditions differed significantly between P. vulgaris and V. unguiculata cultivars. After rehydration, cultivars can be characterised according to the degree of injury induced by the drought treatment: V. unguiculata cv. EPACE-1 as the least affected, V. unguiculata cv. IT83D slightly affected and P. vulgaris cv. Carioca strongly affected. Similar ranking was obtained with experiments previously performed at a cellular and subcellular level. Our results confirm the utility of physiological parameters as early screening tools for drought resistance in bean cultivars.  相似文献   

12.
The biogeography of Gunnera L.: vicariance and dispersal   总被引:2,自引:1,他引:1  
Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty‐six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well‐known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade.  相似文献   

13.
Cardinalfishes of the genus Apogon (Apogonidae) are one of the most speciose (>200 species) and numerically dominant fishes in coral reefs. Although the genus is divided into 10 subgenera, more than 70% of the species are included in the subgenus Ostorhinchus, most having either horizontal or vertical lines on the body. The phylogenetic relationship among 32 species of subgenus Ostorhinchus and 11 species of four other subgenera of Apogon, based on mitochondrially encoded 12S and 16S ribosomal genes and intervening tRNA(Val) gene, were investigated, using two species of the apogonid genus Fowleria as outgroups. The analyses demonstrated that Ostorhinchus (the most speciose subgenus) was polyphyletic, comprising at least three lineages, Ostorhinchus I, II, and III. Ostorhinchus I included two species, A. (O.) amboinensis and A. (O.) sangiensis, being a sister group to subgenus Zoramia. Ostorhinchus II and III included species with horizontal and vertical lines on the body, respectively. The respective monophylies of the latter two groups, together with a molecular clock calibration, indicated that in the evolutionary history of the genus, basic stripe patterns evolved first (more than 20 million years BP), with subsequent pattern diversification and modification.  相似文献   

14.
Using species-level phylogenies, the speciation mode of Gyrodactylus species infecting a single host genus was evaluated. Eighteen Gyrodactylus species were collected from gobies of the genus Pomatoschistus and sympatric fish species across the distribution range of the hosts. The V4 region of the ssrRNA and the internal transcribed spacers encompassing the 5.8S rRNA gene were sequenced; by including published sequences a total of 30 species representing all subgenera were used in the data analyses. The molecular phylogeny did not support the morphological groupings into subgenera as based on the excretory system, suggesting that the genus needs systematic revisions. Paraphyly of the total Gyrodactylus fauna of the gobies indicates that at least two independent colonisation events were involved, giving rise to two separate groups, belonging to the subgenus Mesonephrotus and Paranephrotus, respectively. The most recent association probably originated from a host switching event from Gyrodactylus arcuatus, which parasitises three-spined stickleback, onto Pomatoschistus gobies. These species are highly host-specific and form a monophyletic group, two possible ‘signatures’ of co-speciation. Host specificity was lower in the second group. The colonising capacity of these species is illustrated by a host jump from gobiids to another fish order (Anguilliformes), supporting the hypothesis of a European origin of Gyrodactylus anguillae and its intercontinental introduction by the eel trade. Thus, allopatric speciation seems to be the dominant mode of speciation in this host–parasite system, with a possible case of sympatric speciation.  相似文献   

15.
Phylogenetic analyses of 46 species of Iris, representing all subgenera and all sections except Regelia, Brevituba, and Monolepis, utilized matK gene and trnK intron sequence data. Sequence data show that Iris is paraphyletic because Belamcanda chinensis is resolved within the genus. The two largest subgenera, Iris and Limniris, are both resolved as polyphyletic. With the removal of section Hexapogon, subgenus Iris is weakly supported as monophyletic. Relationships within subgenus Limniris are more complex with the subgenus as currently circumscribed representing eight independent origins among the species included in this study. Several potential monophyletic groups are identified including subgenus Scorpiris, series Spuria (subgenus Limniris section Limniris), and a clade of section Limniris species from North America and Asia.  相似文献   

16.
The Teloschistaceae is a widespread family with considerable morphological and ecological heterogeneity across genera and species groups. In order to provide a comprehensive molecular phylogeny for this family, phylogenetic analyses were carried out on sequences from the nuclear ribosomal ITS region obtained from 114 individuals that represent virtually all main lineages of Teloschistaceae. Our study confirmed the polyphyly of Caloplaca, Fulgensia and Xanthoria, and revealed that Teloschistes is probably non-monophyletic. We also confirm here that species traditionally included in Caloplaca subgenus Gasparrinia do not form a monophyletic entity. Caloplaca aurantia, C. carphinea and C. saxicola s. str. groups were recovered as monophyletic. The subgenera Caloplaca and Pyrenodesmia were also polyphyletic. In the subgenus Caloplaca, the traditionally recognized C. cerina group was recovered as monophyletic. Because this study is based solely on ITS, to maximize taxon sampling, the inclusion of phylogenetic signal from ambiguously aligned regions in MP (recoded INAASE and arc characters) resulted in the most highly supported phylogenetic reconstruction, compared with Bayesian inference restricted to alignable sites.  相似文献   

17.
Restriction site mapping of mitochondrial DNA (mtDNA) with 16 restriction endonucleases was used to examine the phylogenetic relationships of Ochotona cansus, O. huangensis, O. thibetana, O. curzoniae and O. erythrotis. A 1-kb length variation between 0. erythrotis of subgenus Pika and other four species of subgenus Ochotona was observed, which may be a useful genetic marker for identifying the two subgenera. The phylogenetic tree constructed using PAUP based on 61 phylogenetically informative sites suggests that O. aythrotis diverged first, followed by O. cansus, while O. atrzoniae and O. huangensis are sister taxa related to O. thibetana. The results indicate that both O. cansus and O. huangensis should be treated as independent species. If the base substitution rate of pikas mtDNA was 2% per million years, then the divergence time of the two subgenera, Pika and Ochotona, is about 8.8 Ma ago of late Miocence, middle Bao-dian of Chinese mammalian age, and the divergence of the four species in subgenus  相似文献   

18.
A phylogenetic analysis of the New World genus Cuphea was conducted employing sequences from the nuclear rDNA internal transcribed spacer (ITS) and chloroplast trnL-trnF spacer and rpl16 intron. The analysis expands the number of Cuphea species from 53 in an earlier ITS study to 70 and adds two chloroplast data sets in order to generate a more complete and robust phylogeny and to test a previous result that suggested the presence of a large North American clade. Results reaffirm the monophyly of Cuphea with Pleurophora as the sister genus and recover a basal divergence event that mirrors the two subgenera of the current classification. Phylogenies of the two chloroplast regions are largely unresolved beyond the initial dichotomy and some resolution at the terminal and subterminal nodes. Based on the ITS phylogeny, five major clades are recognized. Subgenus Cuphea (Clade 1), defined morphologically by the synapomorphic loss of bracteoles, is sister to the much larger subg. Bracteolatae (Clades 2–5). Clades 2–4, comprising the South American and Caribbean species, grade successively to Clade 5, an exclusively North American lineage of 29 species. Among the 12 sections included in the study, only section Trispermum, a subclade of Clade 4, is monophyletic. Section Pseudocircaea is nested within Clade 3, which is largely equivalent to section Euandra. The North American endemic clade includes four sections, of which none are recovered as monophyletic in this study.  相似文献   

19.
Liu S  Liu Y  Guo P  Sun Z  Murphy RW  Fan Z  Fu J  Zhang Y 《Zoological science》2012,29(9):610-622
The systematics of Oriental voles remains controversial despite numerous previous studies. In this study, we explore the systematics of all species of Oriental voles, except Eothenomys wardi, using a combination of DNA sequences and morphological data. Our molecular phylogeny, based on two mitochondrial genes (COI and cyt b), resolves the Oriental voles as a monophyletic group with strong support. Four distinct lineages are resolved: Eothenomys, Anteliomys, Caryomys, and the new subgenus Ermites. Based on morphology, we consider Caryomys and Eothenomys to be valid genera. Eothenomys, Anteliomys, and Ermites are subgenera of Eothenomys. The molecular phylogeny resolves subgenera Anteliomys and Ermites as sister taxa. Subgenus Eothenomys is sister to the clade Anteliomys + Ermites. Caryomys is the sister group to genus Eothenomys. Further, the subspecies E. custos hintoni and E. chinensis tarquinius do not cluster with E. custos custos and E. chinensis chinensis, respectively, and the former two taxa are elevated to species level and assigned to the new subgenus Ermites.  相似文献   

20.
A phylogeny of the mosquito subfamily Anophelinae was inferred from fragments of two protein-coding nuclear genes, G6pd (462 bp) and white (801 bp), and from a combined data set (2,136 bp) that included a portion of the mitochondrial gene ND5 and the D2 region of the ribosomal 28S gene. Sixteen species from all three anopheline genera and six Anopheles subgenera were sampled, along with six species of other mosquitoes used as an outgroup. Each of four genes analyzed individually recovered the same well-supported clades; topological incongruence was limited to unsupported or poorly supported nodes. As assessed by the incongruence length difference test, most of the conflicting signal was contributed by third codon positions. Strong structural constraints, as observed in white and G6pd, apparently had little impact on phylogenetic inference. Compared with the other genes, white provided a superior source of phylogenetic information. However, white appears to have experienced accelerated rates of evolution in few lineages, the affinities of which are therefore suspect. In combined analyses, most of the inferred relationship were well-supported and in agreement with previous studies: monophyly of Anophelinae, basal position of Chagasia, monophyly of Anopheles subgenera, and subgenera Nyssorhynchus + Kerteszia as sister taxa. The results suggested also monophyletic origin of subgenera Cellia + Anopheles, and the white gene analysis supported genus Bironella as a sister taxon to Anopheles. The present data and other available evidence suggest a South American origin of Anophelinae, probably in the Mesozoic; a rapid diversification of Bironella and basal subgeneric lineages of Anopheles, potentially associated with the breakup of Gondwanaland; and a relatively recent and rapid dispersion of subgenus Anopheles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号