首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.  相似文献   

2.
A novel piezoelectric method for DNA point mutation detection based on DNA ligase reaction and nano-Au-amplified DNA probes is proposed. A capture probe was designed with the potential point mutation site located at the 3' end and a thiol group at the 5' end to be immobilized on the gold electrode surface of quartz crystal microbalance (QCM). Successive hybridization with the target DNA and detection probe of nano-Au-labeled DNA forms a double-strand DNA (dsDNA). After the DNA ligase reaction and denaturing at an elevated temperature, the QCM frequency would revert to the original value for the target with single-base mismatch, whereas a reduced frequency response would be obtained for the case of the perfect match target. In this way, the purpose of point mutation discrimination could be achieved. The current approach is demonstrated with the identification of a single-base mutation in artificial codon CD17 of the beta-thalassemia gene, and the wild type and mutant type were discriminated successfully. The scanning electron microscope (SEM) image showing that plenty of gold nanoparticles remained on the electrode surface demonstrated that the nano-Au label served as an efficient signal amplification agent in QCM assay. A detection limit of 2.6 x 10(-9)mol/L of oligonucleotides was achieved. Owing to its ease of operation and low detection limit, it is expected that the proposed procedure may hold great promise in both research-based and clinical genomic assays.  相似文献   

3.
A novel biosensing technique for highly specific identification of gene with single-base mutation is proposed based on the implementation of the DNA ligase reaction and the biocatalyzed deposition of an insoluble product. The target gene mediated deposition of an insoluble precipitate is then transduced by quartz crystal microbalance (QCM) measurements. In this method, the DNA target hybridizes with a capture DNA probe tethered onto the gold electrode and then with a biotinylated allele-specific detection DNA. A ligase reaction is performed to generate the ligation between the capture and the detection probes, provided there is perfect match between the DNA target and the detection probe. Otherwise even when there is an allele mismatch between them, no ligation would take place. After thermal treatment at an elevated temperature, the formed duplex melts apart that merely allows the detection probe perfectly matched with the target to remain on the electrode surface. The presence of the biotinylated allele-matched probe is then detected by the QCM via the binding to streptavidin-peroxide horseradish (SA-HRP), which catalyzes the oxidative precipitation of 3,3-diaminobenzidine (DAB) by H2O2 on the electrode and provides an amplified frequency response. The proposed approach has been successfully implemented for the identification of single-base mutation in -28 site of the beta-thalassemia gene with a detection limit of 0.1 nM, demonstrating that this method provides a highly specific and cost-efficient approach for point mutation detection.  相似文献   

4.
We introduce a sensing platform for specific detection of DNA based on the formation of gold nanoparticles dimers on a surface. The specific coupling of a second gold nanoparticle to a surface bound nanoparticle by DNA hybridization results in a red shift of the nanoparticle plasmon peak. This shift can be detected as a color change in the darkfield image of the gold nanoparticles. Parallel detection of hundreds of gold nanoparticles with a calibrated true color camera enabled us to detect specific binding of target DNA. This enables a limit of detection below 1.0×10(-14) M without the need for a spectrometer or a scanning stage.  相似文献   

5.
Nam JM  Jang KJ  Groves JT 《Nature protocols》2007,2(6):1438-1444
The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).  相似文献   

6.
We describe a facile gold nanoparticle (AuNP)-mediated colorimetric method for real-time detection of target DNA in conjugation with our unique isothermal target and signaling probe amplification (iTPA) method, comprising novel ICA (isothermal chain amplification) and CPT (cycling probe technology). Under isothermal conditions, the iTPA simultaneously amplifies the target and signaling probe through two displacement events induced by a combination of four specially designed primers, the strand displacement activity of DNA polymerase, and the RNA degrading activity of RNase H. The resulting target amplicons are hybridized with gold nanoparticle cross-linking assay (GCA) probes having a DNA-RNA-DNA chimeric form followed by RNA cleavage by RNase H in the CPT step. The intact GCA probes were designed to cross-link two sets of DNA-AuNPs conjugates in the absence of target DNA, inducing aggregation (blue color) of AuNPs. On the contrary, the presence of target DNA leads to cleavage of the GCA probes in proportion to the amount of amplified target DNA and the solution remains red in color without aggregation of AuNPs. Relying on this strategy, 10(2) copies of target Chlamydia trachomatis plasmid were successfully detected in a colorimetric manner. Importantly, all the procedures employed up to the final detection of the target DNA were performed under isothermal conditions without requiring any detection instruments. Therefore, this strategy would greatly benefit convenient, real-time monitoring technology of target DNA under restricted environments.  相似文献   

7.
A 2D colorimetric DNA sensor is reported based on the 2D aggregation of oligonucleotide-modified gold nanoparticle probes resulting from the molecular hybridization between these latest and their complementary single stranded DNA targets. To increase their mobility the nanoparticles are adsorbed on a fluid lipid bilayer, itself supported on a substrate. The hybridization between the target and the mobile nanoparticle probes creates links between the nanoparticles resulting in the formation of nanoparticle aggregates in the plane of the substrate. This aggregation is detected using a new method based on the selective desorption of non-aggregated nanoparticles. The addition of dextran sulfate induces the substitution of non-aggregated gold nanoparticles while aggregated ones are stable on the substrate. We show that this detection method is highly specific and allows the detection of DNA mismatches and damages.  相似文献   

8.
A mutation detection strategy based on multiplex PCR followed by multiplex allele-specific oligonucleotide probe ligation was developed to detect single nucleotide substitutions in ras oncogenes, a common genetic abnormality in many human cancers. Mutation-specific probes are synthesized for each possible single-base, nonsilent mutation in codons 12, 13, and 61 of H-, K-, and N-ras oncogenes. Mutations are identified by competitive oligonucleotide probe ligation to detect normal and /or mutant genotypes in one reaction. Three probes (one common and two allelic probes) are needed for analysis of each mutation. Probes hybridized to target ras oncogene DNA are joined by a thermostable ligase if there are no mismatches at their junctions; temperature cycling results in a linear increase in product. Common probes are labeled with fluorochromes, and allelic probes each have different lengths. Ligation products are analyzed by denaturing polyacrylamide gel electrophoresis on a fluorescent DNA sequencer. We have applied this technology to identify ras mutations in pancreatic cancers and lung cancers and in patients with myelodysplastic syndromes and leukemias.  相似文献   

9.
Rapid growth of available sequence data has made the detection of nucleic acids critical to the development of modern life sciences. Many amplification methods based on gold nanoparticles and endonuclease for sensitive DNA detection have been developed. However, these approaches require specific target sequence for endonuclease recognition, which cannot be fulfilled in all systems. Replacing the restriction enzyme with a nuclease that does not require any specific recognition sequence may offer a universally adaptable system. Here we have developed a novel homogeneous, colorimetric DNA detection method, which consists of Exo III, a linker DNA, and two DNA-modified gold nanoparticles. This system is simple, low-cost, sensitive and selective. By coupling cyclic enzymatic cleavage and gold nanoparticle for signal amplification, our system provides a colorimetric detection limit of 15 pM, which is 3 orders of magnitude more sensitive than that of a general three-component sandwich assay format. Due to the intrinsic property of Exo III, our method shows excellent detection selectivity for single-base discrimination. More importantly, superior to other methods based on nicking and FokI endonuclease, our target sequence-independent platform is generally applicable for DNA sensing. This new approach could be widely applied to sensitive nucleic acids detection.  相似文献   

10.
抗体和寡核苷酸双标记纳米金生物探针的制备及性能分析   总被引:1,自引:0,他引:1  
基于纳米金粒子与抗体静电吸附作用,与硫醇修饰的寡核苷酸共价结合,建立一种新的双标记纳米金生物探针的制备方法.通过透射电镜(TEM)、紫外光谱、斑点免疫金渗滤法、免疫金银染色光镜观察法、荧光标记法等检测探针表征,及表面抗体活性情况和寡核苷酸的覆盖率,同时采用变性聚丙烯酰胺凝胶电泳(PAGE)检测寡核苷酸的存在.结果表明,纳米金粒子同时连接抗体和寡核苷酸后生物性能良好,且每个纳米金粒子(10±3)nm表面可覆盖寡核苷酸(92±20)条,双标记纳米金生物探针的制备具有简捷、稳定的特点.可作为一种新型探针应用于超微量蛋白质检测.  相似文献   

11.
The development of a nanoparticle-based detection methodology for sensitive and specific DNA-based diagnostic applications is described. The technology utilizes gold nanoparticles derivatized with thiol modified oligonucleotides that are designed to bind complementary DNA targets. A glass surface with arrays of immobilized oligonucleotide capture sequences is used to capture DNA targets, which are then detected via hybridization to the gold nanoparticle probes. Amplification with silver allows for detection and quantitation by measuring evanescent wave induced light scatter with low-cost optical detection systems. Compared to Cy3-based fluorescence, silver amplified gold nanoparticle probes provide for a approximately 1000-fold increase in sensitivity. Furthermore, direct detection of non-amplified genomic DNA from infectious agents is afforded through increased specificity and even identification of single nucleotide polymorphisms (SNP) in human genomic DNA appears feasible.  相似文献   

12.
Liu J  Lu Y 《Nature protocols》2006,1(1):246-252
Aptamers are single-stranded DNA or RNA molecules that can bind target molecules with high affinity and specificity. The conformation of an aptamer usually changes upon binding to its target analyte, and this property has been used in a wide variety of sensing applications, including detection based on fluorescence intensity, polarization, energy transfer, electrochemistry or color change. Colorimetric sensors are particularly important because they minimize or eliminate the necessity of using expensive and complicated instruments. Among the many colorimetric sensing strategies, metallic nanoparticle-based detection is desirable because of the high extinction coefficients and strong distance-dependent optical properties of the nanoparticles. Here, we describe a protocol for the preparation of aptamer-linked gold nanoparticle purple aggregates that undergo fast disassembly into red dispersed nanoparticles upon binding of target analytes. This method has proved to be generally applicable for colorimetric sensing of a broad range of analytes. The time range for the entire protocol is approximately 5 d, including synthesis and functionalization of nanoparticles, preparation of nanoparticle aggregates and sensing.  相似文献   

13.
随着纳米技术的发展,运用纳米粒子检测核酸成为研究的热点.在众多检测方法中,基于纳米金的比色分析法操作较为简便,只需普通光学仪器甚至肉眼即可观察结果,从而表现出广阔的市场及临床应用前景.基于纳米金的比色分析法有多种,不同检测原理的方法在灵敏度和实用性上存在差异.根据纳米金是否经寡核苷酸探针修饰可将其分为基于功能化纳米金的比色分析法和基于未功能化纳米金的比色分析法,前者又分为利用纳米金颜色变化的聚集反应体系以及利用纳米金特殊氧化-还原能力的银染增强体系.  相似文献   

14.
Apparent thermodynamics of association of DNA-modified gold nanoparticles has been characterized by UV spectroscopy and dynamic light scattering (DLS). Extinction coefficients of unlabelled and DNA-labelled gold nanoparticles have been determined to permit quantitative analysis of the absorption measurements. In contrast to previous studies the associating gold nanoparticles were furnished with complementary oligonucleotide DNA single strands. This resulted in direct complex formation between the nanoparticles on mixing without the requirement of a DNA linker sequence for initiation of cluster formation. Melting curves of the nanoparticle assemblies formed at different temperatures were subjected to two-state analysis. A comparison of the apparent thermodynamic parameters obtained for the dissociation of these aggregates suggests that both thermodynamically and structurally different nanoparticle clusters are obtained depending on the temperature at which assembly proceeds. The van't Hoff enthalpies permit an estimate of the DNA duplexes: gold nanoparticle ratio involved in network formation.  相似文献   

15.
We combined three modern technologies of single base polymorphism detection in human genome: ligase detection reaction, rolling circle amplification and IMAGE hydro-gel microarrays. Polymorphism in target DNA was tested by selective ligation on microarray. Product of the ligase reaction was determined in microarray gel pads by rolling circle amplification. Two different methods were compared. In first, selective ligation of short oligonucleotides immobilized on microarray was used with subsequent amplification on preformed circle probe ("common circle"). The circle probe was designed especially for human genome research. In second variant, allele-specific padlock probes that may be circularized by selective ligation were immobilized on microarray. Polymorphism of codon 72 in human p53 gene was used as a biological model. It was shown that LDR/RCA on microarray is a quantitative reaction and gives high discrimination of alleles. Principles and perspectives of selective ligation and rolling circle amplification are being discussed.  相似文献   

16.
Ligation of a tandem of short oligonucleotides was proposed for detecting single-base substitutions in amplified DNA fragments. An octamer–tetramer–octamer tandem was ligated on a 20-mer template with T4 DNA ligase. As shown with radiolabeled oligonucleotides, the efficiency and selectivity of ligation did not change with an octamer linked to a water-soluble carrier based on polyethylene glycol (MPEG), while ligation was somewhat lower with the octamer immobilized on methacrylate beads (DMEG). In both cases, polymer attachment improved the discrimination of 20-mer templates with single-base substitutions in the binding site for the tetramer or for the immobilized octamer. Tandems with a radiolabeled or biotinylated component were also efficiently ligated on amplified DNA fragments. The data obtained with DNA fragments of HIV-1 strains bru and rf demonstrate the possibility of reliable detection of single-base substitutions via ligation of a tandem and colorimetric detection of the immobilized ligation product with the streptavidin–alkaline phosphatase technique.  相似文献   

17.
Forster Resonance Energy Transfer has served as a molecular ruler that reports conformational changes and intramolecular distances of single biomolecules. However, such rulers suffer from low and fluctuating signal intensities, limited observation time due to photobleaching, and an upper distance limit of approximately 10 nm. Noble metal nanoparticles have plasmon resonances in the visible range and do not blink or bleach. They have been employed as alternative probes to overcome the limitations of organic fluorophores, and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments. Here we demonstrate that plasmon coupling can be used to monitor distances between single pairs of gold and silver nanoparticles. We followed the directed assembly of gold and silver nanoparticle dimers in real time and studied the kinetics of single DNA hybridization events. These "plasmon rulers" allowed us to continuously monitor separations of up to 70 nm for >3,000 s.  相似文献   

18.
A novel fluorescent probe for adenosine triphosphate (ATP) assay based on DNA ligation is proposed in this article. This approach uses a novel smart probe, T4 DNA ligase, and two short oligonucleotides. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction and the ligation product restores the fluorescence of the smart probe. This method is very sensitive with a 0.5-nM limit of detection. Compared with current assay methods, the strategy is simpler, cheaper, and 40 times more sensitive.  相似文献   

19.
Hu Y  Hua S  Li F  Jiang Y  Bai X  Li D  Niu L 《Biosensors & bioelectronics》2011,26(11):4355-4361
Sensitive electrochemical impedance assay of DNA hybridization by using a novel graphene sheets platform was achieved. The graphene sheets were firstly functionalized with 3,4,9,10-perylene tetracarboxylic acid (PTCA). PTCA molecules separated graphene sheets efficiently and introduced more negatively-charged -COOH sites, both of which were beneficial to the decoration of graphene with gold nanoparticles. Then amine-terminated ionic liquid (NH?-IL) was applied to the reduction of HAuCl? to gold nanoparticles. The green-synthesized gold nanoparticles, with the mean diameter of 3 nm, dispersed uniformly on graphene sheets and its outer layer was positively charged imidazole termini. Due to the presence of large graphene sheets and NH?-IL protected gold nanoparticles, DNA probes could be immobilized via electrostatic interaction and adsorption effect. Electrochemical impedance value increased after DNA probes immobilization and hybridization, which was adopted as the signal for label-free DNA hybridization detection. Unlike previously anchoring DNA to gold nanoparticles, this label-free method was simple and noninvasive. The conserved sequence of the pol gene of human immunodeficiency virus 1 was satisfactorily detected via this strategy.  相似文献   

20.
Enzyme-linked immunosorbent assay (ELISA) is a popular detection technique for the screening and diagnosis of diseases. The sensitivity of ELISA can be increased by the incorporation of nanoparticles. Through this article, we discuss the utilization of nanoparticles in ELISA. Nanoparticles possess an intrinsic biological peroxidase-like activity which allows it to act as an enzyme mimic for the development of an improved analysis method. Different nanoparticles (gold nanoparticles, silver nanoparticles, etc.) carry different peroxidase-mimic characteristics. Besides this, nanoparticles can also perform as a colorimetric substrate in ELISA where it gives a more prominent color change compared to the commonly used colorimetric substrate TMB. This article also focuses on the mechanisms behind this color change including aggregation, in situ nanoparticle growth, seeding, and etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号