首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xu Y  Dewanti AR  Mitra B 《Biochemistry》2002,41(41):12313-12319
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Active site structures of three homologous enzymes, including MDH, show the presence of two conserved arginine residues in close juxtaposition (Arg165 and Arg277 in MDH). Arg277 has an important catalytic role; it stabilizes both the ground and transition states through its positive charge as well as a hydrogen bond [Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065]. In this study, we examined the role of Arg165 and the overall importance of the Arg165/Arg277 pair. Single mutants at Arg165 as well as double mutants at Arg165 and Arg277 were characterized. Our results show that Arg165 has a role similar to, but less critical than, that of Arg277. It stabilizes the transition state through its positive charge and the ground state through a charge-independent interaction, most likely, a hydrogen bond. Though the k(cat)s for the charge-conserved mutants, R165K and R277K, were only 3-5-fold lower than those of wild-type MDH (wtMDH), the k(cat) for R165K/R277K was approximately 350-fold lower. Thus, at least one arginine residue is required for the optimal substrate orientation and catalysis. Stopped-flow studies show that the FMN reduction step is completely rate-limiting for both wtMDH and the arginine mutants, with the possible exception of R165E. Substrate isotope effects indicate that the carbon-hydrogen bond-breaking step is only partially rate-limiting for wtMDH but fully rate-limiting for the mutants. pH profiles of R165M conclusively show that the pK(a) of 9.3 in free wtMDH does not belong to Arg165.  相似文献   

2.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(33):10692-10700
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Despite a high degree of sequence and structural similarity, this family can be divided into three subgroups based on the different oxidants utilized in the second oxidative half-reaction. Only the oxidases show high reactivity with molecular oxygen. Structural data indicate that the relative position of a peptide loop and the isoalloxazine ring of the FMN is slightly different in the oxidases compared to the dehydrogenases; the last residue on this loop is either an alanine or glycine. We examined the effect of the G81A, G81S, G81V, and G81D mutations in MDH on the overall reaction and especially on the suppression of activity with oxygen. G81A had a higher specificity for small substrates compared to that of wtMDH, though the affinity for (S)-mandelate was relatively unchanged. The rate of the first half-reaction was 20-130-fold slower for G81A and G81S; G81D and G81V had extremely low activity. Redox-potential measurements indicate that the reduction in activity is due to the decrease in electrophilicity of the FMN. The affinity for oxygen increased 10-15-fold for G81A and G81S relative to wtMDH; the rate of oxidation increased 2-fold for G81A. The increased reactivity with molecular oxygen did not correlate with the redox potentials and appears to primarily result from a higher affinity for oxygen. These results suggest that one of the ways the oxidase activity of MDH is controlled is through steric effects because of the relative positions of the FMN and the Gly81 loop.  相似文献   

3.
Y Xu  B Mitra 《Biochemistry》1999,38(38):12367-12376
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a member of the flavin mononucleotide-dependent alpha-hydroxy acid oxidase/dehydrogenase family, is a membrane-associated protein, in contrast to the more well-characterized members of this protein family including glycolate oxidase (GOX) from spinach. In a previous study [Mitra, B., et al. (1993) Biochemistry 32, 12959-12967], the membrane association of MDH was correlated to a 53 amino acid segment in the interior of the primary sequence by construction of a chimeric enzyme, MDH-GOX1, in which the membrane-binding segment in MDH was deleted and replaced with the corresponding 34 amino acid segment from the soluble GOX. Though MDH-GOX1 was soluble, it was an inefficient, nonspecific enzyme that involved a different transition state for the catalyzed reaction from that of the wild-type MDH. In the present study, it is shown that the membrane-binding segment in MDH is somewhat shorter, approximately 39 residues long. Partial or total deletion of this segment disrupts membrane localization of MDH. This segment is not important for substrate oxidation activity. A new chimera, MDH-GOX2, was created by replacing this shorter membrane-binding segment from MDH with the corresponding 20 amino acid segment from GOX. The soluble MDH-GOX2 is very similar to the wild-type membrane-bound enzyme in its spectroscopic properties, substrate specificity, catalytic activity, kinetic mechanism, and lack of reactivity toward oxygen. Therefore, it should prove to be a highly useful model for structural studies of MDH.  相似文献   

4.
The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned. The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA). Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P. putida. (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast. Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor. These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways. The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells.  相似文献   

5.
6.
Carnitine dehydrogenase (carnitine:NAD+ oxidoreductase, EC 1.1.1.108) from Pseudomonas putida IFP 206 catalyzes the oxidation of L-carnitine to 3-dehydrocarnitine. The enzyme was purified 72-fold to homogeneity as judged by polyacrylamide gel electrophoresis. The molecular mass of this enzyme is 62 kDa and consists of two identical subunits. The isoelectric point was found to be 4.7. the carnitine dehydrogenase is specific for L-carnitine and NAD+. The optimum pH for enzymatic activity in the oxidation reaction was found to be 9.0 and 7.0 in the reduction reaction. The optimal temperature is 30 degrees C. The Km values for substrates were determined.  相似文献   

7.
Lehoux IE  Mitra B 《Biochemistry》1999,38(18):5836-5848
(S)-Mandelate dehydrogenase from Pseudomonas putida, a member of the flavin mononucleotide-dependent alpha-hydroxy acid oxidase/dehydrogenase family, oxidizes (S)-mandelate to benzoylformate. The enzyme was purified with a carboxy-terminal histidine tag. Steady-state kinetic parameters indicate that it preferentially binds large substrates. A good correlation was obtained between the kcat, the substrate kinetic isotope effect (KIE), and the pKa of the substrate alpha-proton. The kcat decreased and the KIE increased for substrates whose alpha-protons have pKas higher than that of mandelate. These results support a mechanism involving a carbanion intermediate but are difficult to reconcile with one involving a direct hydride transfer. pH effects on steady-state parameters were determined with (S)-mandelate and a slow substrate, (R,S)-3-phenyllactate. The kcat/Km pH profile shows that two groups with apparent pKas of 5.5 and 8.9 in the free enzyme are important for activity. These pKas are shifted to 5.1 and 9.6 on binding (S)-mandelate, as shown in the kcat pH profile. The pH dependence of the KIEs suggests that the residues with these pKas are involved in the alpha-carbon-hydrogen bond-breaking step. pH dependencies of the inhibition constants for competitive inhibitors identified these residues as histidine 274 and arginine 277. We propose that histidine 274 is the base that abstracts the substrate alpha-proton and arginine 277 is important for substrate binding as well as stabilization of the carbanion/enolate intermediate.  相似文献   

8.
Sukumar N  Xu Y  Gatti DL  Mitra B  Mathews FS 《Biochemistry》2001,40(33):9870-9878
The structure of an active mutant of (S)-mandelate dehydrogenase (MDH-GOX2) from Pseudomonas putida has been determined at 2.15 A resolution. The membrane-associated flavoenzyme (S)-mandelate dehydrogenase (MDH) catalyzes the oxidation of (S)-mandelate to give a flavin hydroquinone intermediate which is subsequently reoxidized by an organic oxidant residing in the membrane. The enzyme was rendered soluble by replacing its 39-residue membrane-binding peptide segment with a corresponding 20-residue segment from its soluble homologue, glycolate oxidase (GOX). Because of their amphipathic nature and peculiar solubilization properties, membrane proteins are notoriously difficult to crystallize, yet represent a large fraction of the proteins encoded by genomes currently being deciphered. Here we present the first report of such a structure in which an internal membrane-binding segment has been replaced, leading to successful crystallization of the fully active enzyme in the absence of detergents. This approach may have general application to other membrane-bound proteins. The overall fold of the molecule is that of a TIM barrel, and it forms a tight tetramer within the crystal lattice that has circular 4-fold symmetry. The structure of MDH-GOX2 reveals how this molecule can interact with a membrane, although it is limited by the absence of a membrane-binding segment. MDH-GOX2 and GOX adopt similar conformations, yet they retain features characteristic of membrane and globular proteins, respectively. MDH-GOX2 has a distinctly electropositive surface capable of interacting with the membrane, while the opposite surface is largely electronegative. GOX shows no such pattern. MDH appears to form a new class of monotopic integral membrane protein that interacts with the membrane through coplanar electrostatic binding surfaces and hydrophobic interactions, thus combining features of both the prostaglandin synthase/squaline-hopine cyclase and the C-2 coagulation factor domain classes of membrane proteins.  相似文献   

9.
Cells of Pseudomonas putida, after growth with naphthalene as sole source of carbon and energy, contain an enzyme that oxidizes (+)-cis-1(r),2(s)-dihydroxy-1,2-dihydronaphthalene to 1,2-dihydroxynaphthalene. The purified enzyme has a molecular weight of 102,000 and apparently consists of four 25,500 molecular weight subunits. The enzyme is specific for nicotinamide adenine dinucleotide as an electron acceptor and also oxidizes several other cis-dihydrodiols. However, no enzymatic activity was observed with trans-1,2-dihydronaphthalene, or the K-region cis-dihydrodiols of carcinogenic polycyclic hydrocarbons.  相似文献   

10.
I E Lehoux  B Mitra 《Biochemistry》1999,38(31):9948-9955
(S)-Mandelate dehydrogenase from Pseudomonas putida, an FMN-dependent alpha-hydroxy acid dehydrogenase, oxidizes (S)-mandelate to benzoylformate. The generally accepted catalytic mechanism for this enzyme involves the formation of a carbanion intermediate. Histidine-274 has been proposed to be the active-site base that abstracts the substrate alpha-proton to generate the carbanion. Histidine-274 was altered to glycine, alanine, and asparagine. All three mutants were completely inactive. The mutants were able to form adducts with sulfite, though with much weaker affinity than the wild-type enzyme. Binding of the inhibitor, (R)-mandelate, was not greatly affected by the mutation, unlike that of the substrate, (S)-mandelate, indicating that H274 plays a role in substrate binding. The activity of H274G and, to a lesser extent, H274A could be partially restored by the addition of exogenous imidazoles. The maximum rescued activity for H274G with imidazole was approximately 0.1% of the wild-type value. Saturation kinetics obtained for rescued activity suggest that formation of a ternary complex of imidazole, enzyme, and substrate is required for catalysis. pH-dependence studies confirm that the free base form of imidazole is the rescue agent. An earlier study of pH profiles of the wild-type enzyme indicated that deprotonation of a residue with a pK(a) of 5.5 in the free enzyme was essential for activity (Lehoux, I. E., and Mitra, B. (1999) Biochemistry 38, 5836-5848). Data obtained in this work confirm that the pK(a) of 5.5 belongs to histidine-274.  相似文献   

11.
Formaldehyde dehydrogenase was isolated and purified in an overall yield of 12% from cell-free extract of Pseudomonas putida C-83 by chromatographies on columns of DEAE-cellulose, DEAE-Sephadex A-50, and hydroxyapatite. The purified enzyme was homogeneous as judged by disc gel electrophoresis and was most active at pH 7.8 using formaldehyde as a substrate. The enzyme was also active toward acetaldehyde, propionaldehyde, glyoxal, and pyruvaldehyde, though the reaction rates were low. The enzyme was NAD+-linked but did not require the external addition of glutathione, in contrast with the usual formaldehyde dehydrogenase from liver mitochondria, baker's yeast, and some bacteria. The enzyme was markedly inhibited by Ni2+, Pd2+, Hg2+, p-chloromercuribenzoate, and phenylmethanesulfonyl fluoride. The molecular weight of the enzyme was estimated to be 150,000 by the gel filtration method, and analysis by SDS-polyacrylamide gel electrophoresis indicated that the enzyme was composed of two subunit monomers. Kinetic analysis gave Km values of 67 microM for formaldehyde and 56 microM for NAD+, and suggested that the reaction proceeds by a "Ping-pong" mechanism. The enzyme catalyzed the oxidation of formaldehyde accompanied by the stoichiometric reduction of NAD+, but no reverse reaction was observed.  相似文献   

12.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

13.
Repression of biosynthetic enzyme synthesis in Pseudomonas putida is incomplete even when the bacteria are growing in a nutritionally complex environment. The synthesis of four of the enzymes of the arginine biosynthetic pathway (N-acetyl-alpha-glutamokinase/N-acetylglutamate-gamma-semialdehyde dehydrogenase, ornithine carbamoyltransferase and acetylornithine-delta-transaminase) could be repressed and derepressed, but the maximum difference observed between repressed and derepressed levels for any enzyme of the pathway was only 5-fold (for ornithine carbamoyltransferase). No repression of five enzymes of the pyrimidine biosynthetic pathway (aspartate carbamoyltransferase, dihydro-orotase, dihydro-orotate dehydrogenase, orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase) could be detected on addition of pyrimidines to minimal asparagine cultures of P. putida A90, but a 1-5- to 2-fold degree of derepression was found following pyrimidine starvation of pyrimidine auxotrophic mutants of P. putida A90. Aspartate carbamoyltransferase in crude extracts of P. putida A90 was inhibited in vitro by (in order of efficiency) pyrophosphate, CTP, UTP and ATP, at limiting but not at saturating concentrations of carbamoyl phosphate.  相似文献   

14.
Pseudomonads are the only organisms so far known to produce two lipoamide dehydrogenases (LPDs), LPD-Val and LPD-Glc. LPD-Val is the specific E3 component of branched-chain oxoacid dehydrogenase, and LPD-Glc is the E3 component of 2-ketoglutarate and possibly pyruvate dehydrogenases and the L-factor of the glycine oxidation system. Three mutants of Pseudomonas putida, JS348, JS350, and JS351, affected in lpdG, the gene encoding LPD-Glc, have been isolated; all lacked 2-ketoglutarate dehydrogenase, but two, JS348 and JS351, had normal pyruvate dehydrogenase activity. The pyruvate and 2-ketoglutarate dehydrogenases of the wild-type strain of P. putida were both inhibited by anti-LPD-Glc, but the pyruvate dehydrogenase of the lpdG mutants was not inhibited, suggesting that the mutant pyruvate dehydrogenase E3 component was different from that of the wild type. The lipoamide dehydrogenase present in one of the lpdG mutants, JS348, was isolated and characterized. This lipoamide dehydrogenase, provisionally named LPD-3, differed in molecular weight, amino acid composition, and N-terminal amino acid sequence from LPD-Glc and LPD-Val. LPD-3 was clearly a lipoamide dehydrogenase as opposed to a mercuric reductase or glutathione reductase. LPD-3 was about 60% as effective as LPD-Glc in restoring 2-ketoglutarate dehydrogenase activity and completely restored pyruvate dehydrogenase activity in JS350. These results suggest that LPD-3 is a lipoamide dehydrogenase associated with an unknown multienzyme complex which can replace LPD-Glc as the E3 component of pyruvate and 2-ketoglutarate dehydrogenases in lpdG mutants.  相似文献   

15.
D-3-Hydroxybutyrate dehydrogenase from Pseudomonas putida belongs to the family of short-chain dehydrogenases/reductases. We have determined X-ray structures of the D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida, which was recombinantly expressed in Escherichia coli, in three different crystal forms to resolutions between 1.9 and 2.1 A. The so-called substrate-binding loop (residues 187-210) was partially disordered in several subunits, in both the presence and absence of NAD(+). However, in two subunits, this loop was completely defined in an open conformation in the apoenzyme and in a closed conformation in the complex structure with NAD(+). Structural comparisons indicated that the loop moves as a rigid body by about 46 degrees . However, the two small alpha-helices (alphaFG1 and alphaFG2) of the loop also re-orientated slightly during the conformational change. Probably, the interactions of Val185, Thr187 and Leu189 with the cosubstrate induced the conformational change. A model of the binding mode of the substrate D-3-hydroxybutyrate indicated that the loop in the closed conformation, as a result of NAD(+) binding, is positioned competent for catalysis. Gln193 is the only residue of the substrate-binding loop that interacts directly with the substrate. A translation, libration and screw (TLS) analysis of the rigid body movement of the loop in the crystal showed significant librational displacements, describing the coordinated movement of the substrate-binding loop in the crystal. NAD(+) binding increased the flexibility of the substrate-binding loop and shifted the equilibrium between the open and closed forms towards the closed form. The finding that all NAD(+) -bound subunits are present in the closed form and all NAD(+) -free subunits in the open form indicates that the loop closure is induced by cosubstrate binding alone. This mechanism may contribute to the sequential binding of cosubstrate followed by substrate.  相似文献   

16.
The purification of (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase from cells of Pseudomonas putida grown with toluene as the sole source of carbon and energy is reported. The molecular weight of the enzyme is 104,000 at pH 9.7. The enzyme is composed of four apparently identical subunits with molecular weights of 27,000. The enzyme is specific for nicotinamide adenine dinucleotide and oxidizes a number of cis-dihydrodiols. Both enantiomers of a racemic mixture of cis-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol are oxidized by the enzyme. No enzymatic activity is observed with trans-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol.  相似文献   

17.
The primary amine dehydrogenase of Pseudomonas putida NP was purified to homogeneity as judged by polyacrylamide gel electrophoresis. Cytochrome c or an artificial electron acceptor was required for amine dehydrogenase activity. The enzyme was nonspecific, readily oxidizing primary monoamines, benzylamine, and tyramine; little or no measurable activity was detected with isoamines, L-ornithine, L-lysine, and certain diamines or polyamines. The pH optima for n-butylamine, benzylamine, and n-propylamine were 7.0, 6.5, and 7.0, respectively. The molecular weight of the enzyme was 112,000 as determined by gel filtration and 95,300 as analyzed by sedimentation equilibrium. Subunit analysis by sodium dodecyl sulfate gel electrophoresis suggested that the enzyme was composed of two nonidentical subunits with molecular weights of 58,000 and 42,000. The absorption spectrum of the purified enzyme was indicative of a hemoprotein, exhibiting absorption maxima at 277, 355, and 408 nm. Reduction with sodium dithionite or amine substrates resulted in absorption maxima at 523 and 552 nm and a shift in the Soret peak to 416 nm. These results suggested that the enzyme is a hemoprotein of the type c cytochrome. There was no evidence that flavins were present.  相似文献   

18.
L-Methionine gamma-lyase from Pseudomonas putida has a conserved tyrosine residue (Tyr114) in the active site as in all known sequences of y-family pyridoxal 5'-phosphate dependent enzymes. A mutant form of L-methionine y-lyase in which Tyr114 was replaced by phenylalanine (Y114F) resulted in 910-fold decrease in kcat for alpha,gamma-elimination of L-methionine, while the Km remained the same as the wild type enzyme. The Y114F mutant had the reduced kcat by only 28- and 16-fold for substrates with an electron-withdrawing group at the gamma-position, namely O-acetyl-L-homoserine and L-methionine sulfone, respectively, and also the similar reduction of kcat for alpha,beta-elimination and deamination substrates. The hydrogen exchange reactions of substrate and the spectral changes of the substrate-enzyme complex catalyzed by the mutant enzyme suggested that gamma-elimination process for L-methionine is the rate-limiting determination step in alpha,gamma-elimination overall reaction of the Y114F mutant. These results indicate that Tyr114 of L-methionine gamma-lyase is important in y-elimination of the substrate.  相似文献   

19.
Wong BJ  Gerlt JA 《Biochemistry》2004,43(16):4646-4654
Members of the enoyl-CoA hydratase (crotonase) superfamily catalyze different overall reactions that utilize a common catalytic strategy delivered by a shared structural scaffold; the substrates are usually acyl esters of coenzyme A, and the intermediates are usually thioester enolate anions stabilized by a conserved oxyanion hole. In many bacterial genomes, orthologous members that contain homologues of acid/base catalyst Glu164 but not of Glu144 in rat mitochondrial crotonase are encoded by operons of which the functions have not been assigned. Focusing on the orthologues from Pseudomonas aeruginosa and P. putida, we have determined that these operons encode enzymes in leucine catabolism with the unknown enzyme assigned as (3S)-methylglutaconyl-CoA hydratase (MGCH), which catalyzes the syn-hydration of (E)-3-methylglutaconyl-CoA to (3S)-hydroxymethylglutaryl-CoA. The discovery that bacterial MGCHs catalyze hydration of enoyl-CoAs utilizing a single active-site residue contrasts with the paradigm crotonases as well as with the recently identified mammalian MGCHs that use homologues of both Glu144 and Glu164 in crotonase. Substrate analogues lacking a gamma-carboxylate have been shown to be competitive inhibitors of the enzyme, and installation of a glutamate for the "missing" homologue of Glu144 fails to introduce hydratase activity with the substrate analogues. Thus, bacterial MGCHs may provide an example of opportunistic evolution in which a carboxylate group of the substrate functionally replaces one of the active site glutamate residues in the reactions catalyzed by crotonases and the eukaryotic MGCHs.  相似文献   

20.
Chromium-contaminated soils threaten surface and groundwater quality at many industrial sites. In vadose zones, indigenous bacteria can reduce Cr(VI) to Cr(III), but the subsequent fate of Cr(III) and the roles of bacterial biofilms are relatively unknown. To investigate, we cultured Pseudomonas putida, a model organism for vadose zone bioremediation, as unsaturated biofilms on membranes overlaying iron-deficient solid media either containing molecular dichromate from potassium dichromate (Cr-only treatment) or with deposits of solid, dichromate-coated hematite (Fe+Cr treatment) to simulate vadose zone conditions. Controls included iron-deficient solid medium and an Fe-only treatment using solid hematite deposits. Under iron-deficient conditions, chromium exposure resulted in lower cell yield and lower amounts of cellular protein and carbohydrate, but providing iron in the form of hematite overcame these toxic effects of Cr. For the Cr and Fe+Cr treatments, Cr(VI) was completely reduced to Cr(III) that accumulated on biofilm cells and extracellular polymeric substances (EPSs). Chromium exposure resulted in elevated extracellular carbohydrates, protein, DNA, and EPS sugars that were relatively enriched in N-acetyl-glucosamine, rhamnose, glucose, and mannose. The proportions of EPS protein and carbohydrate relative to intracellular pools suggested Cr toxicity-mediated cell lysis as the origin. However, DNA accumulated extracellularly in amounts far greater than expected from cell lysis, and Cr was liberated when extracted EPS was treated with DNase. These results demonstrate that Cr accumulation in unsaturated biofilms occurs with enzymatic reduction of Cr(VI), cellular lysis, cellular association, and extracellular DNA binding of Cr(III), which altogether can facilitate localized biotic stabilization of Cr in contaminated vadose zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号