首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work was undertaken to characterize kinetics, including activation, desensitization and deactivation, of responses mediated by GABAA and GABAC receptors on carp retinal bipolar cells, using the whole-cell patch-clamp technique. It was revealed that the GABAC response was generally slower in kinetics than the GABAA response. Activation kinetics of both the receptors could be well fit by monoexponential functions with time constants τ, being 44.57 ms (GABAC) and 10.86 ms (GABAA) respectively. Desensitization of the GABAA response was characterized by a fast and a slow exponential component with time constants of τfast = 2.16 s and τslow = 19.78 s respectively, whereas desensitization of the GABAC response was fit by a monoexponential function of the time constant τ = 6.98 s. Deactivation at both the receptors was adequately described by biexponential functions with time constants being much higher for the GABAC response (τfast = 674.8 ms; τslow = 2 090 ms) than those for the GABAA response (τfast = 42.07 ms; τslow = 275.1 ms). These differences in kinetics suggest that GABAC and GABAA receptors may be involved in processing signals in different frequency domains.  相似文献   

2.
We found that Tyr-Leu (YL) dose-dependently exhibits potent anxiolytic-like activity (0.1-1 mg/kg, i.p.) comparable to diazepam in the elevated plus-maze test in mice. YL was orally active (0.3-3 mg/kg). A retro-sequence peptide or a mixture of Tyr and Leu was inactive. The anxiolytic-like activity of YL was inhibited by antagonists for serotonin 5-HT1A, dopamine D1 and GABAA receptors; however, YL had no affinity for them. We also determined the order of their activation is 5-HT1A, D1 and GABAA receptors using selective agonists and antagonists. Taken together, YL may exhibit anxiolytic-like activity via activation of 5-HT1A, D1 and GABAA receptors.  相似文献   

3.
Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na+ and L-type Ca2+ channels and GABAA receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABAA receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABAA α1β3γ2S receptor currents in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 μM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABAA receptor currents and suppressed allosteric modulation by flunitrazepam at α1β3γ2S receptors. All effects were independent of the presence of a γ2S subunit in the GABAA receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABAA receptor through changes in lipid bilayer elasticity.  相似文献   

4.
Major pelvic ganglia (MPG) are relay centers for autonomic reflexes such as micturition and penile erection. MPG innervate the urogenital system, including bladder. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and may also play an important role in some peripheral autonomic ganglia, including MPG. However, the electrophysiological properties and function of GABAA receptor in MPG neurons innervating bladder remain unknown. This study examined the electrophysiological properties and functional roles of GABAA receptors in bladder-innervating neurons identified by retrograde Dil tracing. Neurons innervating bladder showed previously established parasympathetic properties, including small membrane capacitance, lack of T-type Ca2+ channel expression, and tyrosine-hydroxylase immunoreactivity. GABAA receptors were functionally expressed in bladder innervating neurons, but GABAC receptors were not. GABA elicited strong depolarization followed by increase of intracellular Ca2+ in neurons innervating bladder, supporting the hypothesis GABA may play an important role in bladder function. These results provide useful information about the autonomic function of bladder in physiological and pathological conditions.  相似文献   

5.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

6.
In the central nervous system (CNS), the inhibitory transmitter GABA interacts with three subtypes of GABA receptors, type A, type B, and type C. Historically, GABA receptors have been classified as either the inotropic GABAA receptors or the metabotropic GABAB receptors. Over the past 10 yr, studies have shown that a third class, called the GABAC receptor, also exists. GABAC receptors are found primarily in the vertebrate retina and to some extent in other parts of the CNS. Although GABAA and GABAC receptors both gate chloride channels, they are pharmacologically, molecularly, and functionally distinct. The ρ subunit of the GABAC receptor, which has about 35% amino acid homology to GABAA receptor subunits, was cloned from the retina and, when expressed inXenopus oocytes, has properties similar to retinal GABAC receptors. There are probably distinct roles for GABAC receptors in the retina, because they are found on only a subset of neurons, whereas GABAA receptors are ubiquitous. This article reviews recent electrophysiological and molecular studies that have characterized the unique properties of GABAC receptors and describes the roles that these receptors may play in visual information processing in the retina.  相似文献   

7.
Intracellular recordings were made from amacrine cells in the isolated, superfused carp retina, and the effects of γ-aminobutyric acid (GABA) on sustained and transient ON signals of these cells were studied. Exogenous GABA application partially suppressed the sustained response of ON amacrine cells, which could be completely reversed by picrotoxin (PTX), a chloride channel blocker, and by bicuculline (BCC), a specific GABA_A receptor antagonist. On the other hand, suppression by GABA of the ON response which was predominantly driven by rod signals in a certain portion of transient ON-OFF amacrine cells was completely blocked by PTX, but not by BCC, indicating that GABA_C receptors may be involved in the effect. These results suggest that GABA_A and GABA_C receptors may be respectively involved in mediating the transmission of sustained and transient signals in the carp inner retina.  相似文献   

8.
Brain GABAA/benzodiazepine receptors are highly heterogeneous. This heterogeneity is largely derived from the existence of many pentameric combinations of at least 16 different subunits that are differentially expressed in various brain regions and cell types. This molecular heterogeneity leads to binding differences for various ligands, such as GABA agonists and antagonists, benzodiazepine agonists, antagonists, and inverse agonists, steroids, barbiturates, ethanol, and Cl channel blockers. Different subunit composition also leads to heterogeneity in the properties of the Cl channel (such as conductance and open time); the allosteric interactions among subunits; and signal transduction efficacy between ligand binding and Cl channel opening. The study of recombinant receptors expressed in heterologous systems has been very useful for understanding the functional roles of the different GABAA receptor subunits and the relationships between subunit composition, ligand binding, and Cl channel properties. Nevertheless, little is known about the complete subunit composition of the native GABAA receptors expressed in various brain regions and cell types. Several laboratories, including ours, are using subunit-specific antibodies for dissecting the heterogeneity and subunit composition of native (not reconstituted) brain GABAA receptors and for revealing the cellular and subcellular distribution of these subunits in the nervous system. These studies are also aimed at understanding the ligand-binding, transduction mechanisms, and channel properties of the various brain GABAA receptors in relation to synaptic mechanisms and brain function. These studies could be relevant for the discovery and design of new drugs that are selective for some GABAA receptors and that have fewer side effects.  相似文献   

9.
GABAA receptors (GABAAR) mediate inhibitory neurotransmission in the human brain. Neurons modify subunit expression, cellular distribution and function of GABAAR in response to different stimuli, a process named plasticity. Human lymphocytes have a functional neuronal-like GABAergic system with GABAAR acting as inhibitors of proliferation. We here explore if receptor plasticity occurs in lymphocytes. To this end, we analyzed human T lymphocyte Jurkat cells exposed to different physiological stimuli shown to mediate plasticity in neurons: GABA, progesterone and insulin. The exposure to 100 μM GABA differently affected the expression of GABAAR subunits measured at both the mRNA and protein level, showing an increase of α1, β3, and γ2 subunits but no changes in δ subunit. Exposure of Jurkat cells to different stimuli produced different changes in subunit expression: 0.1 μM progesterone decreased δ and 0.5 μM insulin increased β3 subunits. To identify the mechanisms underlying plasticity, we evaluated the Akt pathway, which is involved in the phosphorylation of β subunits and receptor translocation to the membrane. A significant increase of phosphorylated Akt and on the expression of β3 subunit in membrane occurred in cells exposed 15 h to GABA. To determine if plastic changes are translated into functional changes, we performed whole cell recordings. After 15 h GABA-exposure, a significantly higher percentage of cells responded to GABA application when compared to 0 and 40 h exposure, thus indicating that the detected plastic changes may have a role in GABA-modulated lymphocyte function.  相似文献   

10.
The expression of GABAA receptors in rat cerebellar granules in culture has been studied by β2/3 subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the β2/3 subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABAA receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABAA receptors.  相似文献   

11.
Kinetics of urease-catalysed urea hydrolysis follows Arrhenius equation in the temperature range 10-50°C and shows an energy of activation equal to 7.14 kcal/mol. The kinetics of thermal inactivation of the enzyme is biphasic, In that half of the initial activity is destroyed more rapidly than the remaining half. The data are consistent with the rate equation: At = Afast·e-k fast -t + Aslow ·e-K slow -t where At is the residual activity at time t, Afast and Aslow, kfast and kslow are the amplitudes and the first-order rate constants of the fast and the slow phases, respectively. A similar activity decay (namely blphaslc) is also observed on storing the enzyme at +4 and ?4OC. The data suggest the existence of half-and-half distribution of sites which is a manifestation of a pre-exlstent site heterogeneity in the oligomeric protein molecule.  相似文献   

12.
GABAC receptors are ligand-gated chloride channels and have important roles in some neurological functions like vision. Recent investigations demonstrated that these receptors are also expressed in the somatosensory cortex. In this study, we investigated the effect of (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) (GABAC receptor antagonist) on the properties of the neuronal response to natural stimuli (whisker deflection) in deep layers of rat barrel cortex. Twenty-eight male Wistar rats, weighing 230–260?g, were used in this study. TPMPA (100?μmol/rat) was administered intracerebroventricularly (ICV). Neuronal responses to deflection of principal (PW) and adjacent (AW) whiskers were recorded in barrel cortex using tungsten microelectrodes. A computer-controlled mechanical displacement was used to deflect whiskers individually or in combination at 30?ms inter-stimulus intervals. ON and OFF responses for PW and AW deflections were measured. A condition-test ratio (CTR) was computed to quantify neuronal responses to whisker interactions. Our data suggest that ICV administration of TPMPA increased neuronal spontaneous activity, ON and OFF responses to PW, and/or AW deflections. However, CTR for neither ON nor OFF responses changed following TPMPA administration. The results of this study demonstrated that inhibition of GABAC receptors by TPMPA can modulate neuronal response properties in rat barrel cortex.  相似文献   

13.
The major inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABAA receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[35S]thionate ([35S]TBPS) binding to GABAA receptors in brain sections and compared the displacing capacities of 10 mM GABA and 1 mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABAA receptor α1, α4, δ, and α4 + δ subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to “GABA-insensitive” (GIS) [35S]TBPS binding. THIP displaced more [35S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of δ KO and α4 + δ KO mice, being only slightly diminished in that of α1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in α4 KO mice. However, it was fully abolished in α1 KO mice, indicating that the α1 subunit was obligatory for the GIS-binding in the forebrain.Our results suggest that native GABAA receptors in brain sections showing reduced displacing capacity of [35S]TBPS binding by GABA (partial agonism) minimally require the assembly of α1 and β subunits in the forebrain and of α6 and β subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABAA receptors.  相似文献   

14.
Hippocampal pyramidal neurons potentially express multiple subtypes of GABAA receptors at extrasynaptic locations that could therefore respond to different drugs. We activated extrasynaptic GABAA receptors in cultured rat hippocampal pyramidal neurons and measured single-channel currents in order to compare the actions of two drugs that potentially target different GABAA receptor subtypes. Despite the possible difference in receptor targets of etomidate and diazepam, the two drugs were similar in their actions on native extrasynaptic GABAA receptors. Each drug produced three distinct responses that differed significantly in current magnitude, implying heterogeneous GABAA receptor populations. In the majority of patches, drug application increased both the single-channel conductance (>40 pS) and the open probability of the channels. By contrast, in the minority of patches, drug application caused an increase in open probability only. In the third group high-conductance channels were observed upon GABA activation and drug application increased their open probability only. The currents potentiated by etomidate or diazepam were substantially larger in patches displaying high-conductance GABA channels compared to those displaying only low-conductance channels. Factors contributing to the large magnitude of these currents were the long mean open time of high-conductance channels and the presence of multiple channels in these patches. In conclusion, we suggest that the local density of extrasynaptic GABAA receptors may influence their single-channel properties and may be an additional regulating factor for tonic inhibition and, importantly, differential drug modulation. This work is dedicated to the memory of Professor P. W. Gage.  相似文献   

15.
The purified urease from pigeonpea was moderately stable at ?10°C. The shelf-life of the enzyme on storage in 0.1 M Tris-acetate buffer, pH 6.5, at ?10°C showed a single exponential decay with a t1/2 of approx. 30 days. In the presence of additives like 5mM dithiothreitol the t1/2 increased to 223 days at the same temperature, in a single exponential decay. The Arrhenius plot of the kinetics of the pigeonpea urease catalysed urea hydrolysis over the temperature range 27 to 77°C, was linear. The Q10 value was found to be 1.46. The energy of activation calculated from the Arrhenius equation was found to be 5.1 kcal/mole active site. The thermal denaturation of pigeopea urease at 65 and 70°C was found to obey biphasic kinetics in which half of the activity is destroyed faster than the remaining half. The time course of thermal inactivation can be described by the following equation, consisting of two first order terms: At = Afast.e-k fast + Aslow.e -kslow.t where, At is the residual activity at time t, Afast and Aslow, kfast and kslow are the amplitudes and the first-order rate constants of the fast and the slow phases, respectively. The data suggests the existence of site-site heterogeneity in oligomeric urease molecule from pigeonpea.  相似文献   

16.
Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9±5.1 ms and 1.2±0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3±0.3 s and deactivated even slower with a time constant of 4.6±1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying pLGIC gating transitions.  相似文献   

17.
To study the effects of bisphenol-A (BPA) known to have estrogenic actions, and its derivatives, 3,5-dimethylphenol (DMP) and p-t-butylphenol (TBP), on ionotropic γ-aminobutyric acid (GABA) receptors, GABAA receptors were expressed in Xenopus oocytes by injecting both poly(A)+RNA prepared from rat whole brain and cRNAs synthesized from cloned cDNAs of α1 and β1 subunit of the bovine receptors, and their electrical responses were measured by the voltage clamping method. BPA caused the potentiation and inhibition of the former receptor-responses, while it caused only inhibition of the latter ones. In the presence of low concentrations of GABA, DMP and TBP potentiated the responses of both receptors. DMP and TBP also increased the rate of decay of the response, possibly by desensitization of the receptors when GABA solution was continuously bath-applied. Diethyl terephthalate (DTP), which is also known to have estrogenic actions, had little effect on both the responses and the decay of both receptors.  相似文献   

18.
There is evidence that many of the GABAA receptor subunits contain consensus sequence for tyrosine kinase, and phosphorylation may play a key role in ethanol’s regulation of GABAA receptors. Recently, we investigated the effect of chronic exposure of ethanol (CE) on tyrosine kinase phosphorylation and reported that there was an up-regulation in tyrosine kinase phosphorylation of the β2- and γ2- subunits and no effect on α1-subunit of the GABAA receptor in the cultured cortical neurons of mice. In the present study, we have further investigated the effect of chronic intermittent administration of ethanol (CIE) on tyrosine kinase phosphorylation of the GABAA receptor subunits (α1, β2, and γ2) in the mouse cultured cortical neurons by immunoprecipitation and Western blot techniques. We observed that there was an up-regulation in the tyrosine kinase phosphorylation of the GABAA receptor β2- and γ2-subunits following CIE exposure, and no effect on α1-subunit in the cultured cortical neurons of mice. These CIE changes, unlike CE, were not reverted back to the control level following ethanol withdrawal even after 7 days. Acute exposure of ethanol did not cause any change in the tyrosine kinase regulation of the GABAA receptor subunits. In conclusion, the CIE exposure, unlike chronic/acute ethanol exposure, regulates the tyrosine kinase phosphorylation of the selective population of GABAA receptors in a long lasting manner.  相似文献   

19.
Mutations of the Nav1.1 channel subunit SCN1A have been implicated in the pathogenesis of human febrile seizures (FS). We have recently developed hyperthermia-induced seizure-susceptible (Hiss) rat, a novel rat model of FS, which carries a missense mutation (N1417H) in Scn1a[1]. Here, we conducted electrophysiological studies to clarify the influences of the Scn1a mutation on the hippocampal synaptic transmission, specifically focusing on the GABAergic system. Hippocampal slices were prepared from Hiss or F344 (control) rats and maintained in artificial cerebrospinal fluid saturated with 95% O2 and 5% CO2in vitro. Single neuron activity was recorded from CA1 pyramidal neurons and their responses to the test (unconditioned) or paired pulse (PP) stimulation of the Schaffer collateral/commissural fibers were evaluated. Hiss rats were first tested for pentylenetetrazole-induced seizures and confirmed to show high seizure susceptibility to the blockade of GAGAA receptors. The Scn1a mutation in Hiss rats did not directly affect spike generation (i.e., number of evoked spikes and firing threshold) of the CA1 pyramidal neurons elicited by the Schaffer collateral/commissural stimulation. However, GABAA receptor-mediated inhibition of pyramidal neurons by the PP stimulation was significantly disrupted in Hiss rats, yielding a significant increase in the number of PP-induced firings at PP intervals of 32-256 ms. The present study shows that the Scn1a missense mutation preferentially impairs GABAA receptor-mediated synaptic transmission without directly altering the excitability of the pyramidal neurons in the hippocampus, which may be linked to the pathogenesis of FS.  相似文献   

20.
Gamma-amino butyric acid (GABA), in addition to being a metabolic intermediate and the main inhibitory neurotransmitter in the synaptic cleft, is postulated as a neurohormone, a paracrine signaling molecule, and a trophic factor. It acts through pre- and post-synaptic receptors, named GABAA and GABAC (ionotropic receptors) and GABAB (metabotropic receptor). Here we reviewed the participation of GABAB receptors in the regulation of the hypothalamic-pituitary-gonadal axis, using physiological, biochemical, and pharmacological approaches in rats, as well as in GABAB1 knock-out mice, that lack functional GABAB receptors. Our general conclusion indicates that GABAB receptors participate in the regulation of pituitary hormone secretion acting both in the central nervous system and directly on the gland. PRL and gonadotropin axes are affected by GABAB receptor activation, as demonstrated in the rat and also in the GABAB1 knock-out mouse. In addition, hypothalamic and pituitary GABAB receptor expression is modulated by steroid hormones. GABA participation in the brain control of pituitary secretion through GABAB receptors depends on physiological conditions, being age and sex critical factors. These results indicate that patients receiving GABAB agonists/antagonists should be monitored for possible endocrine side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号