共查询到20条相似文献,搜索用时 0 毫秒
1.
Derouazi M Toussaint B Quénée L Epaulard O Guillaume M Marlu R Polack B 《Applied and environmental microbiology》2008,74(11):3601-3604
The Escherichia coli system is the system of choice for recombinant protein production because it is possible to obtain a high protein yield in inexpensive media. The accumulation of protein in an insoluble form in inclusion bodies remains a major disadvantage. Use of the Pseudomonas aeruginosa type III secretion system can avoid this problem, allowing the production of soluble secreted proteins. 相似文献
2.
Presence or absence of lipopolysaccharide O antigens affects type III secretion by Pseudomonas aeruginosa
下载免费PDF全文

Augustin DK Song Y Baek MS Sawa Y Singh G Taylor B Rubio-Mills A Flanagan JL Wiener-Kronish JP Lynch SV 《Journal of bacteriology》2007,189(6):2203-2209
Pseudomonas aeruginosa is one of the major causative agents of mortality and morbidity in hospitalized patients due to a multiplicity of virulence factors associated with both chronic and acute infections. Acute P. aeruginosa infection is primarily mediated by planktonic bacteria expressing the type III secretion system (TTSS), a surface-attached needle-like complex that injects cytotoxins directly into eukaryotic cells, causing cellular damage. Lipopolysaccharide (LPS) is the principal surface-associated virulence factor of P. aeruginosa. This molecule is known to undergo structural modification (primarily alterations in the A- and B-band O antigen) in response to changes in the mode of life (e.g., from biofilm to planktonic). Given that LPS exhibits structural plasticity, we hypothesized that the presence of LPS lacking O antigen would facilitate eukaryotic intoxication and that a correlation between the LPS O-antigen serotype and TTSS-mediated cytotoxicity would exist. Therefore, strain PAO1 (A+ B+ O-antigen serotype) and isogenic mutants with specific O-antigen defects (A+ B-, A- B+, and A- B-) were examined for TTSS expression and cytotoxicity. A strong association existed in vitro between the absence of the large, structured B-band O antigen and increased cytotoxicity of these strains. In vivo, all three LPS mutant strains demonstrated significantly increased lung injury compared to PAO1. Clinical strains lacking the B-band O antigen also demonstrated increased TTSS secretion. These results suggest the existence of a cooperative association between LPS O-antigen structure and the TTSS in both laboratory and clinical isolates of P. aeruginosa. 相似文献
3.
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, translocates exoenzymes (Exo) directly into the eukaryotic cell cytoplasm. This is accomplished by a type III secretion/translocation machinery. Here, we show that the P. aeruginosa type III secretory needle structure is composed essentially of PscF, a protein required for secretion and P. aeruginosa cytotoxicity. Partially purified needles, detached from the bacterial surface, are 60-80 nm in length and 7 nm in width, resembling needles from Yersinia spp.. YscF of Yersinia enterocolitica was able to functionally complement the pscF deletion, but required 11 P. aeruginosa-specific amino acids at the N-terminus for its function. 相似文献
4.
Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii 总被引:1,自引:0,他引:1
Abd H Wretlind B Saeed A Idsund E Hultenby K Sandström G 《The Journal of eukaryotic microbiology》2008,55(3):235-243
Pseudomonas aeruginosa is a free-living and common environmental bacterium. It is an opportunistic and nosocomial pathogen causing serious human health problems. To overcome its predators, such as macrophages and environmental phagocytes, it utilises different survival strategies, such as the formation of microcolonies and the production of toxins mediated by a type III secretion system (TTSS). The aim of this study was to examine interaction of TTSS effector proteins of P. aeruginosa PA103 with Acanthamoeba castellanii by co-cultivation, viable count, eosin staining, electron microscopy, apoptosis assay, and statistical analysis. The results showed that P. aeruginosa PA103 induced necrosis and apoptosis to kill A. castellanii by the effects of TTSS effector proteins ExoU, ExoS, ExoT, and ExoY. In comparison, Acanthamoeba cultured alone and co-cultured with P. aeruginosa PA103 lacking the known four TTSS effector proteins were not killed. The results are consistent with P. aeruginosa being a strict extracellular bacterium that needs TTSS to survive in the environment, because the TTSS effector proteins are able to kill its eukaryotic predators, such as Acanthamoeba. 相似文献
5.
6.
Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa
下载免费PDF全文

Pseudomonas aeruginosa cytotoxicity is linked to a type III secretion system (T3SS) that delivers effectors into the host cell. We show here that a negative cross-control exists between T3SS and flagellar assembly. We observed that, in a strain lacking flagella, T3SS gene expression, effector secretion, and cytotoxicity were increased. Conversely, we revealed that flagellar-gene expression and motility were decreased in a strain overproducing ExsA, the T3SS master regulator. Interestingly, a nonmotile strain lacking the flagellar filament (DeltafliC) presented a hyperefficient T3SS and a nonmotile strain assembling flagella (DeltamotAB) did not. More intriguingly, a strain lacking motCD genes is a flagellated strain with a slight defect in swimming. However, in this strain, T3SS gene expression was up-regulated. These results suggest that flagellar assembly and/or mobility antagonizes the T3SS and that a negative cross talk exists between these two systems. An illustration of this is the visualization by electron microscopy of T3SS needles in a nonmotile P. aeruginosa strain, needles which otherwise are not detected. The molecular basis of the cross talk is complex and remains to be elucidated, but proteins like MotCD might have a crucial role in signaling between the two processes. In addition, we found that the GacA response regulator negatively affects the T3SS. In a gacA mutant, the T3SS effector ExoS is hypersecreted. Strikingly, GacA was previously reported as a positive regulator for motility. Globally, our data document the idea that some virulence factors are coordinately but inversely regulated, depending on the bacterial colonization phase and infection types. 相似文献
7.
Moscoso JA Mikkelsen H Heeb S Williams P Filloux A 《Environmental microbiology》2011,13(12):3128-3138
Acute bacterial infections are associated with motility and cytotoxicity via the type III secretion system (T3SS), while chronic infections are linked to biofilm formation and reduced virulence. In Pseudomonas aeruginosa, the transition between motility and sessility involves regulatory networks including the RetS/GacS sensors, as well as the second messenger c-di-GMP. The RetS/GacS signalling cascade converges on small RNAs, RsmY and RsmZ, which control a range of functions via RsmA. A retS mutation induces biofilm formation, and high levels of c-di-GMP produce a similar response. In this study, we connect RetS and c-di-GMP pathways by showing that the retS mutant displays high levels of c-di-GMP. Furthermore, a retS mutation leads to repression of the T3SS, but also upregulates the type VI secretion system (T6SS), which is associated with chronic infections. Strikingly, production of the T3SS and T6SS can be switched by artificially modulating c-di-GMP levels. We show that the diguanylate cyclase WspR is specifically involved in the T3SS/T6SS switch and that RsmY and RsmZ are required for the c-di-GMP-dependent response. These results provide a firm link between the RetS/GacS and the c-di-GMP pathways, which coordinate bacterial lifestyles, as well as secretion systems that determine the infection strategy of P. aeruginosa. 相似文献
8.
9.
10.
Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa
下载免费PDF全文

The type III secretion system (T3SS) of Pseudomonas aeruginosa plays a significant role in pathogenesis. We have previously identified type III secretion factor (TSF), which is required for effective secretion of the type III effector molecules, in addition to the low calcium signal. TSF includes many low-affinity high-capacity calcium binding proteins, such as serum albumin and casein. A search for the TSF binding targets on the bacterial outer membrane resulted in identification of PopN, a component of the T3SS that is readily detectable on the bacterial cell surface. PopN specifically interacts with Pcr1, and both popN and pcr1 mutants have a constitutive type III secretion phenotype, suggesting that the two proteins form a complex that functions as a T3SS repressor. Further analysis of the popN operon genes resulted in identification of protein-protein interactions between Pcr1 and Pcr4 and between Pcr4 and Pcr3, as well as between PopN and Pcr2 in the presence of PscB. Unlike popN and pcr1 mutants, pcr3 and pcr4 mutants are totally defective in type III secretion, while a pcr2 mutant exhibits reduced type III secretion. Interestingly, PopN, Pcr1, Pcr2, and Pcr4 are all secreted in a type III secretion machinery-dependent manner, while Pcr3 is not. These findings imply that these components have important regulatory roles in controlling type III secretion. 相似文献
11.
12.
13.
Type III secretion/translocation systems are essential actors in the pathogenicity of Gram-negative bacteria. The injection of bacterial toxins across the host cell plasma membranes is presumably accomplished by a proteinaceous structure, the translocon. In vitro, Pseudomonas aeruginosa translocators PopB and PopD form ringlike structures observed by electron microscopy. We demonstrate here that PopB and PopD are functionally active and sufficient to form pores in lipid vesicles. Furthermore, the two translocators act in synergy to promote membrane permeabilization. The size-based selectivity observed for the passage of solutes indicates that the membrane permeabilization is due to the formation of size-defined pores. Our results provide also new insights into the mechanism of translocon pore formation that may occur during the passage of toxins from the bacterium into the cell. While proteins bind to lipid vesicles equally at any pH, the kinetics of membrane permeabilization accelerate progressively with decreasing pH values. Electrostatic interactions and the presence of anionic lipids were found to be crucial for pore formation whereas cholesterol did not appear to play a significant role in functional translocon formation. 相似文献
14.
Schoehn G Di Guilmi AM Lemaire D Attree I Weissenhorn W Dessen A 《The EMBO journal》2003,22(19):4957-4967
Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems. 相似文献
15.
Plasmid control of the Pseudomonas aeruginosa and Pseudomonas putida phenotypes and of linalool and p-cymene oxidation. 总被引:1,自引:1,他引:1
下载免费PDF全文

Two Pseudomonas strains (PpG777 and PaG158) were derived from the parent isolate Pseudomonas incognita (putida). Strain PpG777 resembles the parental culture in growth on linalool as a source of carbon and slight growth on p-cymene, whereas PaG158 grows well on p-cymene, but not on linalool or other terpenes tested, and has a P. aeruginosa phenotype. Curing studies indicate that linalool metabolism is controlled by an extrachromosomal element whose loss forms a stable strain PaG158 with the p-cymene growth and P. aeruginosa phenotype characters. The plasmid can be transferred by PpG777 to both P. putida and P. aeruginosa strains. Surprisingly, the latter assume the P. putida phenotype. We conclude that the genetic potential to oxidize p-cymene is inherent in PpG777 but expression is repressed. Similarly, this observation implies that support of linalool oxidation effectively conceals the P. aeruginosa character. 相似文献
16.
Exoenzyme S is an extracellular ADP-ribosyltransferase of Pseudomonas aeruginosa . Transposon mutagenesis of P. aeruginosa 388 was used to identify genes required for exoenzyme S production. Five Tn 5 Tc insertion mutants were isolated which exhibited an exoenzyme S-deficient phenotype (388::Tn 5 Tc 469, 550, 3453, 4885, and 5590). Mapping experiments demonstrated that 388::Tn 5 Tc 3453, 4885, and 5590 possessed insertions within a 5.0 kb Eco RI fragment that is not contiguous with the exoenzyme S trans -regulatory operon. 388::Tn 5 Tc 469 and 550 mapped to a region downstream of the trans -regulatory operon which has been previously shown to contain a promoter region that is co-ordinately regulated with exoenzyme S synthesis. Nucleotide sequence analysis of a 7.2 kb region flanking the 388::Tn 5 Tc 469 and 550 insertions, identified 12 contiguous open reading frames (ORFs). Database searches indicated that the first ORF, ExsD, is unique. The other 11 ORFs demonstrated high homology to the YscB–L proteins of the yersiniae Yop type III export apparatus. RNase-protection analysis of wild-type and mutant strains indicated that exsD and pscB–L form an operon. To determine whether ExoS was exported by a type III mechanism, derivatives consisting of internal deletions or lacking amino- or carboxy-terminal residues were expressed in P. aeruginosa . Deletion analyses indicated that the amino-terminal nine residues are required for ExoS export. Combined data from mutagenesis, regulatory, expression, and sequence analyses provide strong evidence that P. aeruginosa possesses a type III secretion apparatus which is required for the export of exoenzyme S and potentially other co-ordinately regulated proteins. 相似文献
17.
18.
Identification of Pseudomonas syringae pv. syringae 61 type III secretion system Hrp proteins that can travel the type III pathway and contribute to the translocation of effector proteins into plant cells
下载免费PDF全文

Ramos AR Morello JE Ravindran S Deng WL Huang HC Collmer A 《Journal of bacteriology》2007,189(15):5773-5778
Pseudomonas syringae translocates effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). T3SS components HrpB, HrpD, HrpF, and HrpP were shown to be pathway substrates and to contribute to elicitation of the plant hypersensitive response and to translocation and secretion of the model effector AvrPto1. 相似文献
19.
20.
Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells 总被引:1,自引:0,他引:1
下载免费PDF全文

Pseudomonas syringae translocates virulence effector proteins into plant cells via a type III secretion system (T3SS) encoded by hrp (for hypersensitive response and pathogenicity) genes. Three genes coregulated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase domains: PSPTO1378 (here designated hrpH), PSPTO2678 (hopP1), and PSPTO852 (hopAJ1). hrpH is located between hrpR and avrE1 in the Hrp pathogenicity island and is carried in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11. Strong expression of DC3000 hrpH in Escherichia coli inhibits bacterial growth unless the predicted catalytic glutamate at position 148 is mutated. Translocation tests involving C-terminal fusions with a Cya (Bordetella pertussis adenylate cyclase) reporter indicate that HrpH and HopP1, but not HopAJ1, are T3SS substrates. Pseudomonas fluorescens carrying a pHIR11 derivative lacking hrpH is poorly able to translocate effector HopA1, and this deficiency can be restored by HopP1 and HopAJ1, but not by HrpH(E148A) or HrpH1-241. DC3000 mutants lacking hrpH or hrpH, hopP1, and hopAJ1 combined are variously reduced in effector translocation, elicitation of the hypersensitive response, and virulence. However, the mutants are not reduced in secretion of T3SS substrates in culture. When produced in wild-type DC3000, the HrpH(E148A) and HrpH1-241 variants have a dominant-negative effect on the ability of DC3000 to elicit the hypersensitive response in nonhost tobacco and to grow and cause disease in host tomato. The three Hrp-associated lytic transglycosylases in DC3000 appear to have overlapping functions in contributing to T3SS functions during infection. 相似文献