首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

2.
Abstract The extent of contamination of a freshwater lake with Vibrio cholerae 0139 Bengal and the toxigenicity of all the V. cholerae isolates recovered during the period of the study were examined during and after an explosive outbreak of 0139 cholera in Calcutta. Strains biochemically characterized as V. cholerae could be isolated throughout the period of study examined from the freshwater lake samples. Most probable number of V. cholerae belonging to the 0139 serogroup in surface waters was 3 to 4 per 100 ml during major part of the study but isolation of this serogroup from sediment and plankton samples was infrequent. Of the total of 150 strains recovered, 23 (15.3%) agglutinated with the 0139 antiserum while the remaining belonged to the non-O1 non-O139 serogroups. None of the strains agglutinated with the O1 antiserum. All the 23 strains of V. cholerae O139 produced cholera toxin while 7.9% of the 127 non-O1 non-O139 strains also produced cholera toxin. Resistance to ampilicillin, furazolidone and streptomycin was encountered among strains belonging to both V. cholerae O139 and V. cholerae non-O1 non-O139 strains, but the percentage of resistant strains in the former was much higher than in the latter. During this cholera epidemic, possibly due to the introduction of large numbers of toxigenic V. cholerae such as the O139 serogroup, there was an increase in the number of toxigenic vibrios among the innocuous aquatic residents. This presumably occured through genetic exchange and, if substantiated, could play an important role in the re-emergence of epidemics.  相似文献   

3.
The pathogenic strains of Vibrio cholerae that cause acute enteric infections in humans are derived from environmental nonpathogenic strains. To track the evolution of pathogenic V. cholerae and identify potential precursors of new pathogenic strains, we analyzed 324 environmental or clinical V. cholerae isolates for the presence of diverse genes involved in virulence or ecological fitness. Of 251 environmental non-O1, non-O139 strains tested, 10 (3.9%) carried the toxin coregulated pilus (TCP) pathogenicity island encoding TCPs, and the CTX prophage encoding cholera toxin, whereas another 10 isolates carried the TCP island alone, and were susceptible to transduction with CTX phage. Most V. cholerae O1 and O139 strains carried these two major virulence determinants, as well as the Vibrio seventh pandemic islands (VSP-1 and VSP-2), whereas 23 (9.1%) non-O1, non-O139 strains carried several VSP island genes, but none carried a complete VSP island. Conversely, 30 (11.9%) non-O1, non-O139 strains carried type III secretion system (TTSS) genes, but none of 63 V. cholerae O1 or O139 strains tested were positive for TTSS. Thus, the distribution of major virulence genes in the non-O1, non-O139 serogroups of V. cholerae is largely different from that of the O1 or O139 serogroups. However, the prevalence of putative accessory virulence genes (mshA, hlyA, and RTX) was similar in all strains, with the mshA being most prevalent (98.8%) followed by RTX genes (96.2%) and hlyA (94.6%), supporting more recent assumptions that these genes imparts increased environmental fitness. Since all pathogenic strains retain these genes, the epidemiological success of the strains presumably depends on their environmental persistence in addition to the ability to produce major virulence factors. Potential precursors of new pathogenic strains would thus require to assemble a combination of genes for both ecological fitness and virulence to attain epidemiological predominance.  相似文献   

4.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

5.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

6.
多重PCR方法检测霍乱弧菌的研究   总被引:1,自引:0,他引:1  
霍乱弧菌是霍乱的病原体,可以分为O1群、O139群和非O1/非O139群。O1群和O139群霍乱弧菌产生的霍乱肠毒素(也称霍乱毒素)是产生霍乱的主要原因,也只有O1群和O139群霍乱弧菌可引起霍乱。其他群的霍乱弧菌毒性不高,但在食品中也不允许被检出。实验以霍乱胶原酶基因和霍乱毒素基因为目的基因,试图建立一种PCR方法对霍乱弧菌进行检测研究,结果表明此方法可以用于食品中的霍乱弧菌检测。  相似文献   

7.
Cholera due to Vibrio cholerae has been spreading worldwide, although the reports focusing on Indonesian V. cholerae are few. In this study, in order to investigate how V. cholerae transmitted to human from environment. We extended an epidemiological report that had investigated the genotype of V. cholerae isolated from human pediatric samples and environmental samples. We examined 44 strains of V. cholerae isolated from pediatric diarrhea patients and the environment such as shrimps or oysters collected in three adjacent towns in Surabaya, Indonesia. Susceptibilities were examined for 11 antibiotics. Serotype O1 or O139 genes and pathogenic genes including cholera toxin were detected. Multi-locus sequence typing (MLST) and enterobacterial repetitive intergenic consensus (ERIC)-PCR were also performed to determine genetic diversity of those isolates. Serotype O1 was seen in 17 strains (38.6%) with all pathogenic genes among 44 isolates. Other isolates were non-O1/non-O139 V. cholerae. Regarding antibiotic susceptibilities, those isolates from environmental samples showed resistance to ampicillin (11.4%), streptomycin (9.1%) and nalidixic acid (2.3%) but those isolates from pediatric stools showed no resistance to those 3 kinds of antibiotics. MLST revealed sequence type (ST) 69 in 17 strains (38.6%), ST198 in 3 strains (6.8%) and non-types in 24 strains (54.5%). All the ST69 strains were classified to O1 type with more than 95% similarity by ERIC-PCR, including all 6 (13.6%) isolates from environmental samples with resistance to streptomycin. In conclusion, V. cholerae O1 ST69 strains has been clonally spreading in Surabaya, exhibiting pathogenic factors and antibiotic resistance to streptomycin, especially in the isolates from environment.  相似文献   

8.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

9.
10.
Enterobacterial repetitive intergenic consensus (ERIC) sequence polymorphism was studied in Vibrio Cholerae strains isolated before and after the cholera epidemic in Brazil (in 1991), along with epidemic strains from Peru, Mexico, and India, by PCR. A total of 17 fingerprint patterns (FPs) were detected in the V. cholerae strains examined; 96.7% of the toxigenic V. cholerae O1 strains and 100% of the O139 serogroup strains were found to belong to the same FP group comprising four fragments (FP1). The nontoxigenic V. cholerae O1 also yielded four fragments but constituted a different FP group (FP2). A total of 15 different patterns were observed among the V. cholerae non-O1 strains. Two patterns were observed most frequently for V. cholerae non-01 strains, 25% of which have FP3, with five fragments, and 16.7% of which have FP4, with two fragments. Three fragments, 1.75, 0.79, and 0.5 kb, were found to be common to both toxigenic and nontoxigenic V. cholerae O1 strains as well as to group FP3, containing V. cholerae non-O1 strains. Two fragments of group FP3, 1.3 and 1.0 kb, were present in FP1 and FP2 respectively. The 0.5-kb fragment was common to all strains and serogroups of V. cholerae analyzed. It is concluded from the results of this study, based on DNA FPs of environmental isolates, that it is possible to detect an emerging virulent strain in a cholera-endemic region. ERIC-PCR constitutes a powerful tool for determination of the virulence potential of V. cholerae O1 strains isolated in surveillance programs and for molecular epidemiological investigations.  相似文献   

11.
An account of our up to date knowledge of the genetics of biosynthesis of Vibrio cholerae lipopolysaccharide (LPS) is presented in this review. While not much information is available in the literature on the genetics of biosynthesis of lipid A of V. cholerae, the available information on the characteristics and proposed functions of the corepolysaccharide (core-PS) biosynthetic genes is discussed. The genetic organizations encoding the O-antigen polysaccharides (O-PS) of V. cholerae of serogroups O1 and O139, the disease causing ones, have been described along with the putative functions of the different constituent genes. The O-PS biosynthetic genes of some non-O1, non-O139 serogroups, particularly the serogroups O37 and O22, and their putative functions have also been discussed briefly. In view of the importance of the serogroup O139, the origination of the O139 strain and the possible donor of the corresponding O-PS gene cluster have been analyzed with a view to having knowledge of (i) the mode of evolution of different serogroups and (ii) the possible emergence of pathogenic strain(s) belonging to non-O1, non-O139 serogroups. The unsolved problems in this area of research and their probable impact on the production of an effective cholera vaccine have been outlined in conclusion.  相似文献   

12.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

13.
Vibrio cholerae is a waterborne bacterium native to the aquatic environment. There are over 200 known serogroups yet only two cause cholera pandemics in humans. Direct contact of human sewage with drinking water, sea-born currents and marine transportation, represent modes of dissemination of the bacteria and thus the disease. The simultaneous cholera outbreaks that occur sometimes in distant localities within continental landmasses are puzzling. Here we present evidence that flying, non-biting midges (Diptera; Chironomidae), collected in the air, carry viable non-O1 non-O139 serogroups of V. cholerae. The association of V. cholerae with chironomid egg masses, which serve as a V. cholerae reservoir, was further confirmed. In simulated field experiments, we recorded the transfer of environmental V. cholerae by adult midges from the aquatic environment into bacteria-free water-pools. In laboratory experiments, flying adult midges that emerged from V. cholerae (O1 or O139) contaminated water transferred the green fluorescent protein (GFP)-tagged pathogenic bacteria from one laboratory flasks to another. Our findings show that aerial transfer by flying chironomids may play a role in the dissemination of V. cholerae in nature.  相似文献   

14.
The utility of inter simple sequence repeat-PCR (ISSR-PCR) assay in the characterization and elucidation of the phylogenetic relationship between the pathogenic and nonpathogenic isolates of Vibrio cholerae is demonstrated. A total of 45 V. cholerae strains including 15 O1 El Tor, nine O139 and 21 non-O1/non-O139 strains were analyzed using eight ISSR primers. These primers, which are essentially simple sequence repeats (SSR) with additional nonrepeat bases at the 5' or 3' end, amplify genomic regions interspersed between closely spaced SSRs. Neighbor-joining analysis showed that the strains belonging to the same serogroup clustered together with the exception of one O1 and two O139 strains. The absence of pathogenicity islands in these strains, as confirmed by PCR, suggested their non-O1/non-O139 origin. Thus the ISSR-PCR-based phylogeny was consistent with the classification of V. cholerae based on serological methods. A finer resolution of the clustering of the toxinogenic O1 El Tor and toxinogenic O139 subtypes was obtained by ISSR-PCR analysis as compared with the Enterobacterial Repetitive Intergenic Consensus sequences-based PCR analysis for the same set of strains. Thus, it is proposed that ISSR-PCR is an efficient tool in phylogenetic classification of prokaryotic genomes in general and diagnostic genotyping of microbial pathogens in particular.  相似文献   

15.
霍乱弧菌是引起人和动物烈性肠道传染病霍乱的病原体。在霍乱弧菌的200多个血清群中,只有O1群和O139群霍乱弧菌能引起霍乱。快速准确检测O1群和O139群霍乱弧菌是霍乱防治的关键。表面抗原在O1群和O139群霍乱弧菌检测中发挥着重要作用。简要综述了O1群和O139群霍乱弧菌的脂多糖、霍乱肠毒素、外膜蛋白W、毒素共调菌毛和甘露糖敏感血凝素等5种主要抗原的研究进展。  相似文献   

16.
Two major virulence factors are associated with epidemic strains (O1 and O139 serogroups) of Vibrio cholerae: cholera toxin encoded by the ctxAB genes and toxin-coregulated pilus encoded by the tcpA gene. The ctx genes reside in the genome of a filamentous phage (CTXphi), and the tcpA gene resides in a vibrio pathogenicity island (VPI) which has also been proposed to be a filamentous phage designated VPIphi. In order to determine the prevalence of horizontal transfer of VPI and CTXphi among nonepidemic (non-O1 and non-O139 serogroups) V. cholerae, 300 strains of both clinical and environmental origin were screened for the presence of tcpA and ctxAB. In this paper, we present the comparative genetic analyses of 11 nonepidemic serogroup strains which carry the VPI cluster. Seven of the 11 VPI(+) strains have also acquired the CTXphi. Multilocus sequence typing and restriction fragment length polymorphism analyses of the VPI and CTXphi prophage regions revealed that the non-O1 and non-O139 strains were genetically diverse and clustered in lineages distinct from that of the epidemic strains. The left end of the VPI in the non-O1 and non-O139 strains exhibited extensive DNA rearrangements. In addition, several CTXphi prophage types characterized by novel repressor (rstR) and ctxAB genes and VPIs with novel tcpA genes were found in these strains. These data suggest that the potentially pathogenic, nonepidemic, non-O1 and non-O139 strains identified in our study most likely evolved by sequential horizontal acquisition of the VPI and CTXphi independently rather than by exchange of O-antigen biosynthesis regions in an existing epidemic strain.  相似文献   

17.
Inducible character of resistance to tetracycline, chloramphenicol and ampicillin was investigated in 20 strains of Vibrio cholera non-O1/non-O139 serogroups isolated from inhabitants of Uzbekistan in 1990 (10 strains, ctx+) and in 2001 (5 strains, ctx-) and from inhabitants of Kalmykiya within 2003-2005 (5 strains, ctx-). Eight of the 20 isolates showed not only capacity for induction of the antibiotic resistance, but also its possible self transfer to Escherichia coli and reverse crosses in El Tor V. cholerae P-5879. It was shown that the effect of the antibacterial on the isolates phenotypic susceptibility could increase the resistance markers expression, when the genomes contained sites responsible for their expression, that required constant bacteriological control of the treatment efficacy and the use of the isolates antibioticograms for early replace of the inefficient drug by the efficient one. The prevalence of V. cholerae O1 and non-O1/non-O13 serogroups with multiple resistance to the antibacterial and the genetic potency for the antibiotic resistance development in the pathogen made difficult the choice of efficient drugs for prophylaxis and treatment of diseases caused by V. cholerae.  相似文献   

18.
A Vibrio cholerae bacteriophage, family Myoviridae, was isolated from seawater collected from the coastal water of Lima, Peru. Genome size was estimated to be 29 kbp. The temperate phage was specific to V. cholerae and infected 12/13 V. cholerae O1 strains and half of the four non-O1/non-O139 strains tested in this study. Vibrio cholerae O139 strains were resistant to infection and highest infection rates were obtained in low nutrient media amended with NaCl or prepared using seawater as diluent.  相似文献   

19.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

20.
Only Vibrio cholerae strains of serotype O1 are known to cause epidemics, while non-O1 strains are associated with sporadic cases of cholera. It was therefore unexpected that the recent cholera epidemic in Asia was caused by a non-O1 strain with the serotype O139. We provide evidence that O139 arose from a strain closely related to the causative agent of the present cholera pandemic, V. cholerae O1 El Tor, by acquisition of novel DNA which was inserted into, and replaced part of, the O antigen gene cluster of the recipient strain. Part of the novel DNA was sequenced and two open reading frames (otnA and otnB) were observed, the products of which showed homology to proteins involved in capsule and O antigen synthesis, respectively. This suggests that the otnAB DNA determines the distinct antigenic properties of the O139 cell surface. The otnAB DNA was not detected in O1 strains, but was present in two non-O1 V. cholerae strains with serotypes O69 and O141. In the O69 and O139 strains the otnAB genes were located proximate to the putative insertion sequence (IS) element rfbQRS, which is associated with O antigen synthesis genes in O1 strains, and may have played a role in the insertion of the otnAB DNA in the recipient chromosome. Our results suggest that the O139 strain arose by horizontal gene transfer between a non-O1 and an O1 strain. The acquired DNA has altered the antigenic properties of the recipient O1 strain, providing a selective advantage in a region where a large part of the population is immune to O1 strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号