首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intrarenal renin-Angiotensin system (RAS) activity is increased during early development and is further enhanced by unilateral ureteral obstruction (UUO). We studied the involvement of mitogen-activated protein (MAP) kinase members and the RhoA GTPase signaling pathways on the regulation of renal cell response after AT1 Angiotensin II receptor inhibition in obstruction. Neonatal rats subjected to sham operation or complete UUO within the first 48 hours of life received saline vehicle, Losartan (AT1 inhibitor), or PD-123319 (AT2 inhibitor) during the first 14 days of life. Cortex tubular epithelial cell apoptotic response was shown by TUNEL and confirmed by electron microscopy associated with mitochondrial signaling pathway through the increased proapoptotic ratio Bax/BcL-2, and consequently increased caspase 3 expression and activity in obstructed kidney before and after Type 1 (AT1) receptor blockade. Non injury of contralateral kidney was shown. The convergence of two independent signal pathways, the RhoA GTPase and pERK and concurrent inhibition of JNK MAP kinase, were required for the apoptotic response in 14 day kidney obstructed tubular cells either with or without Losartan treatment. Absence of increased AT2 protein expression after AT1 receptor inhibition on day 14 of obstruction was shown. Selective AngiotensinAT2-receptor inhibition with PD-123319 had no protective effect on the renal response to complete 14 day UUO. We suggest a role of both RhoA GTPase activation and the opposing actions of the ERK and JNK-MAP kinase signaling pathways as events involved in tubular cell apoptosis regulation in neonatal UUO. The selective AT1-receptor inhibition had no effect on the renal cellular response in the kidney subjected to UUO for 14 days.  相似文献   

2.
We tested the hypothesis that VEGF regulates endothelial hyperpermeability to macromolecules by activating the ERK-1/2 MAPK pathway. We also tested whether PKC and nitric oxide (NO) mediate VEGF-induced increases in permeability via the ERK-1/2 pathway. FITC-Dextran 70 flux across human umbilical vein endothelial cell monolayers served as an index of permeability, whereas Western blots assessed the phosphorylation of ERK-1/2. VEGF-induced hyperpermeability was inhibited by antisense DNA oligonucleotides directed against ERK-1/2 and by blockade of MEK and Raf-1 activities (20 microM PD-98059 and 5 microM GW-5074). These blocking agents also reduced ERK-1/2 phosphorylation. The PKC inhibitor bisindolylmaleimide I (10 microM) blocked both VEGF-induced ERK-1/2 activation and hyperpermeability. The NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (200 microM) and the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidiazoline-1-oxyl-3-oxide (100 microM) abolished VEGF-induced hyperpermeability but did not block ERK-1/2 phosphorylation. These observations demonstrate VEGF-induced hyperpermeability involves activation of PKC and NOS as well as Raf-1, MEK, and ERK-1/2. Furthermore, our data suggest that ERK-1/2 and NOS are elements of different signaling pathways in VEGF-induced hyperpermeability.  相似文献   

3.
Nitric oxide (NO) contributes to neuronal death in cerebral ischemia and other conditions. Astrocytes are anatomically well positioned to shield neurons from NO because astrocyte processes surround most neurons. In this study, the capacity of astrocytes to limit NO neurotoxicity was examined using a cortical co-culture system. Astrocyte-coated dialysis membranes were placed directly on top of neuronal cultures to provide a removable astrocyte layer between the neurons and the culture medium. The utility of this system was tested by comparing neuronal death produced by glutamate, which is rapidly cleared by astrocytes, and N-methyl-D-aspartate (NMDA), which is not. The presence of an astrocyte layer increased the LD(50) for glutamate by approximately four-fold, but had no effect on NMDA toxicity. Astrocyte effects on neuronal death produced by the NO donors S-nitroso-N-acetyl penicillamine and spermine NONOate were examined by placing these compounds into the medium of co-cultures containing either a control astrocyte layer or an astrocyte layer depleted of glutathione by prior exposure to buthionine sulfoximine. Neurons in culture with the glutathione-depleted astrocytes exhibited a two-fold increase in cell death over a range of NO donor concentrations. These findings suggest that astrocytes protect neurons from NO toxicity by a glutathione-dependent mechanism.  相似文献   

4.
Reactive oxygen species (ROS) play a pivotal role in UVA-induced cell damage. As expression of the inducible nitric oxide synthase (iNOS) is a normal response of human skin to UV radiation we examined the role of nitric oxide (NO) as a protective agent during or even after UVA1- or ROS-exposure against apoptosis or necrosis of rat endothelial cells. When added during or up to 2 h subsequent to UVA1 or ROS exposure the NO-donor S-nitroso-cysteine (SNOC) at concentrations from 100-1000 microM significantly protects from both apoptosis as well as necrosis. The NO-mediated protection strongly correlates with complete inhibition of lipid peroxidation (sixfold increase of malonedialdehyde formation in untreated versus 1.2-fold with 1 mM SNOC). NO-mediated protection of membrane function was also shown by the inhibition of cytochrome c leakage in UVA1 treated cells, a process not accompanied by alterations in Bax and Bcl-2 protein levels. Thus, the experiments presented demonstrate that NO exposure during or even after a ROS-mediated toxic insult fully protects from apoptosis or necrosis by maintaining membrane integrity and function.  相似文献   

5.
Uptake of K+ is an important role of astrocytes to maintain physiological lower extracellular K+ concentration in the CNS. In this study, the effect of high K+ concentration was examined on the cellular function of astrocytes from embryonic rat brain in primary culture. Nitric oxide (NO) production induced by lipopolysaccharide (LPS) was measured as an index of cellular function of astrocytes. Increasing KCl concentration to about 40 mM did not directly evoke NO production, but doubled the level of LPS (1 ng/ml)-induced NO production. K-gluconate showed a similar enhancing effect although the degree of enhancement was about half of that of KCl. Neither NaCl nor Na-gluconate showed any effect. The K(+)-channel blocker, 4-aminopyridine, but not tetraethylammonium or apamin, inhibited the enhancing effect of KCl. The LPS-induced iNOS protein expression determined by immunoblotting analysis was enhanced by high K+ treatment. The level of iNOS mRNA determined by real-time RT-PCR technique was also augmented by the presence of 40 mM KCl. These results indicate that the elevation of extracellular K+ concentration regulates astrocytic cell functions through a mechanism involving K(A)-type K(+)-channels and that potentiation of NO production by high K+ is due to the augmentation of iNOS mRNA and iNOS protein levels.  相似文献   

6.
Ischemic stroke results in cerebral tissue hypoxia and increased expression of hypoxia-inducible factor(HIF),which is critically implicated in ischemic brain in...  相似文献   

7.
Regulation of cell proliferation by thyroid hormone (TH) has been demonstrated, but the effect of THs and the mechanisms involved in lymphocyte activity have not been elucidated. Differential expression of PKC isoenzymes and high nitric oxide synthase (NOS) activity have been described in tumor T lymphocytes. We have analyzed the direct actions of TH on normal T lymphocytes and BW5147 T lymphoma cells in relation to PKC and NOS activities. THs increased tumor and mitogen-induced normal T lymphocyte proliferation. PKC isoenzyme-selective blockers impaired these effects in both cell types, indicating the participation of Ca2+-dependent and -independent isoenzymes in normal and tumor cells, respectively. TH actions were blunted by extra- and intracellular Ca2+ blockers only in normal T lymphocytes, whereas NOS blockers impaired TH-induced proliferation in T lymphoma cells. Incubation for 24 h with TH induced a rise in total and membrane-associated PKC activities in both cell types and led to a rapid and transient effect only in tumor cells. THs increased atypical PKC-zeta expression in BW5147 cells and classical PKC isoenzymes in mitogen-stimulated normal T cells. TH augmented NOS activity and inducible NOS protein and gene expression only in tumor cells. Blockade of PKC and the atypical PKC-zeta isoform inhibited TH-mediated stimulation of inducible NOS and cell proliferation. These results show, for the first time, that differential intracellular signals are involved in TH modulation of lymphocyte physiology and pathophysiology.  相似文献   

8.
9.
Cannabinoids, the active components of marijuana and their endogenous counterparts, exert many of their actions on the central nervous system by binding to the CB(1) cannabinoid receptor. Different studies have shown that cannabinoids can protect neural cells from different insults. However, those studies have been performed in neurons, whereas no attention has been focused on glial cells. Here we used the pro-apoptotic lipid ceramide to induce apoptosis in astrocytes, and we studied the protective effect exerted by cannabinoids. Results show the following: (i) cannabinoids rescue primary astrocytes from C(2)-ceramide-induced apoptosis in a dose- and time-dependent manner; (ii) triggering of this anti-apoptotic signal depends on the phosphatidylinositol 3-kinase/protein kinase B pathway; (iii) ERK and its downstream target p90 ribosomal S6 kinase might be also involved in the protective effect of cannabinoids; and (iv) cannabinoids protect astrocytes from the cytotoxic effects of focal C(2)-ceramide administration in vivo. In summary, results show that cannabinoids protect astrocytes from ceramide-induced apoptosis via stimulation of the phosphatidylinositol 3-kinase/protein kinase B pathway. These findings constitute the first evidence for an "astroprotective" role of cannabinoids.  相似文献   

10.
Sphingosine 1-phosphate (S1P) can prevent endothelial cell apoptosis. We investigated the molecular mechanisms and signaling pathways by which S1P protects endothelial cells from serum deprivation-induced apoptosis. We show here that human umbilical vein endothelial cells (HUVECs) undergo apoptosis associated with increased DEVDase activity, caspase-3 activation, cytochrome c release, and DNA fragmentation after 24 h of serum deprivation. These apoptotic markers were suppressed by the addition of S1P, the NO donor S-nitroso-N-acetylpenicillamine (100 micrometer), or caspase-3 inhibitor z-VAD-fmk. The protective effects of S1P were reversed by the nitric-oxide synthase (NOS) inhibitor N-monomethyl-l-arginine, but not by the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo[4,3-a]-quanoxaline-1-one, suggesting that NO, but not cGMP, is responsible for S1P protection from apoptosis. Furthermore, S1P increased NO production by enhancing Ca(2+)-sensitive NOS activity without changes in the eNOS protein level. S1P-mediated cell survival and NO production were suppressed significantly by pretreatment with antisense oligonucleotide of EDG-1 and partially by EDG-3 antisense. S1P-mediated NO production was suppressed by the addition of pertussis toxin, an inhibitor of G(i) proteins, the specific inhibitor of phospholipase C (PLC), and the Ca(2+) chelator BAPTA-AM. These findings indicate that S1P protects HUVECs from apoptosis through the activation of eNOS activity mainly through an EDG-1 and -3/G(i)/PLC/Ca(2+) signaling pathway.  相似文献   

11.
Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a newly identified proangiogenic protein, which plays an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. This study investigated whether AGGF1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Wild-type (WT) C57BL/6 J mice were treated at 30 min prior to I/R injury with anti-AGGF1 neutralizing antibody (3 mg/kg) or recombinant human AGGF1 (rhAGGF1, 0.25 mg/kg). After I/R injury, the infarct size, the number of TUNEL-positive cardiomyocytes, Bax/Bcl2 ratio, inflammatory cytokine expression and angiogenesis were markedly increased as compared with sham control. Treatment of WT mice with anti-AGGF1 neutralizing antibody resulted in exaggeration of myocardial I/R injury but reducing angiogenesis. In contrast, administration of rhAGGF1 markedly reversed these effects. Furthermore, anti-AGGF1- or rhAGGF1-mediated effects on I/R-induced cardiac apoptosis, inflammation and angiogenesis were dose dependent. In addition, the protective effects of AGGF1 on cardiomyocyte apoptosis and inflammation were confirmed in cultured cardiomyocytes after I/R. Finally, these effects were associated with activation of ERK1/2, Stat3 and HIF-1α/VEGF pathways and inhibition of activation of NF-κB, p53 and JNK1/2 pathways. In conclusion, we report the first in vivo and in vitro evidence that AGGF1 reduces myocardial apoptosis and inflammation and enhances angiogenesis, leading to decreased infarct size after I/R injury. These results may provide a novel therapeutic approach for ischemic heart diseases.  相似文献   

12.
The role of TNF-alpha in the control of mycobacterial growth in murine macrophages was studied in vitro. Infection of macrophages from TNF-alpha gene disrupted (TNF-knockout (KO)) mice with recombinant Mycobacterium bovis bacillus Calmette Guérin (BCG) expressing the vector only (BCG-vector) resulted in logarithmic growth of the intracellular bacilli. Infection with BCG-secreting murine TNF-alpha (BCG-TNF) led to bacillary killing. Killing of BCG-TNF was associated with rapid accumulation of inducible NO synthase (iNOS) protein and the production of nitrite. The uncontrolled growth of BCG-vector was associated with low iNOS expression but no nitrite production. Thus, iNOS expression appears to be TNF-alpha independent but iNOS generation of NO requires TNF-alpha. In cultures of TNF-KO macrophages infected with BCG-TNF, inhibition of iNOS by aminoguanidine (AMG) abolished the killing of the bacilli. However, the growth of the organisms was still inhibited, suggesting an iNOS-independent TNF-alpha-mediated growth inhibition. To confirm this, macrophages from iNOS-KO mice were infected with either BCG-vector or BCG-TNF. As expected, no nitrite was detected in the culture medium. TNF-alpha was detected only when the cells were infected with BCG-TNF. In the iNOS-KO macrophages, the growth of BCG was inhibited only in the BCG-TNF infection. These results suggest that in the absence of iNOS activity, TNF-alpha stimulates macrophages to control the growth of intracellular BCG. Thus, there appears to be both a TNF-alpha-dependent-iNOS-dependent killing pathway as well as a TNF-alpha-dependent-iNOS-independent growth inhibitory pathway for the control of intracellular mycobacteria in murine macrophages.  相似文献   

13.
We investigated the effects of naringin on small intestine, liver, kidney and lung recovery after ischemia/reperfusion (I/R) injury of the gut. Rats were divided randomly into four groups of eight. Group A was the sham control; group B was ischemic for 2 h; group C was ischemic for 2 h and re-perfused for 2 h (I/R); group D was treated with 50 mg/kg naringin after ischemia, then re-perfused for 2 h. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expressions were detected by immunolabeling. We also measured arginase activity, amounts of nitric oxide (NO) and total protein. iNOS was increased significantly in the small intestine, liver and kidney in group C. iNOS was decreased significantly only in small intestine and lung in group D. eNOS was increased significantly in the small intestine, liver and lung in group C. eNOS was decreased in small intestine, liver and lung in group D; however, eNOS was decreased in the kidney in group C and increased in the kidney in group D. The amount of NO was decreased significantly in all tissues in group D, but arginase activity was decreased in the small intestine and lung, increased in the kidney and remained unchanged in the liver in group D. The total protein increased in the small intestine and liver in group D, but decreased significantly in the kidney and lung in group D. Naringin had significant, salutary effects on the biochemical parameters of I/R by decreasing the NO level, equilibrating iNOS and eNOS expressions, and decreasing arginase activity.  相似文献   

14.
Gamma delta T cells are early recruited into mycobacterial lesions. Upon microbial Ag recognition, gamma delta cells secrete cytokines and chemokines and undergo apoptosis via CD95/CD95 ligand (CD95L) interaction, possibly influencing the outcome of infection and the characteristics of the disease. In this paper we show that activated phagocytes acquire, upon challenge with Mycobacterium tuberculosis, the ability to inhibit M. tuberculosis-induced gamma delta cell apoptosis. Apoptosis protection was due to NO because it correlated with NO synthase (NOS)-2 induction and activity in scavenger cells and was abrogated by NOS inhibitors. Furthermore, the NO donor S-nitrosoacetylpenicillamine mimicked the effect of enzyme induction. NO left unaffected the expression of CD95 and CD95L, suggesting interference with an event ensuing CD95/CD95L interaction. NO was found to interfere with the intracellular accumulation of ceramide and the activation of caspases, which were involved in gamma delta T cells apoptosis after M. tuberculosis recognition. We propose that NO generated by infected macrophages determines the life span and therefore the function of lymphocytes at the infection site, thus linking innate and adaptive immunity.  相似文献   

15.
16.
The aim of this study was to examine whether a neuroprotector, PBN (alpha-phenyl-tert-butyl nitrone), enhances apoptosis induced by hyperthermia, which generates superoxide (O2-) intracellularly, since the release of nitric oxide (NO) from PBN under oxidative stress has been reported. When human myelomonocytic lymphoma U937 cells were treated with hyperthermia (44 degrees C, 10 min) and PBN, an increase in the concentration of nitrite in the culture medium, and a decrease in the hyperthermia-induced production of O2- was observed. Imaging using a fluorescence dye for intracellular NO, diaminofluorescein-2 diacetate (DAF-2 DA), revealed the formation of NO in the apoptotic cells treated with hyperthermia and PBN combined. Apoptotic endpoints were significantly enhanced by the combined treatment: a decrease in mitochondrial trans-membrane potential, cleavage of Bid, release of cytochrome c, and activation of caspase-8 and -3. An increase in the intracellular Ca2+ concentration ([Ca2+]i), externalization of Fas, and decrease in Hsp70 and phosphorylated HSF1 were observed following the combined treatment. Furthermore, scavengers of NO an d ONOO- significantly inhibited the enhancement of apoptosis, the externalization of Fas and the increase in [Ca2+]i. These results suggest that, (1) NO is released from PBN by hyperthermia, and subsequently reacts with O2- to form ONOO-, (2) NO and ONOO- are involved in the enhancement of apoptosis through Fas-mitochondria-caspase and [Ca2+]i-dependent pathways, and (3) a decrease in Hsp70 and phosphorylated HSF1 also contributed to the enhancement of apoptosis.  相似文献   

17.
The aim of this study was to examine the relative contribution of both cyclooxygenase (COX) isoforms in producing the prostaglandins (PG) involved in the regulation of renal function, when nitric oxide (NO) synthesis is reduced. In anesthetized dogs with reduction of NO synthesis, the renal effects of a nonisozyme-specific COX inhibitor (meclofenamate) were compared with those elicited by a selective COX-2 inhibitor (nimesulide) before and during an extracellular volume expansion (ECVE). Intrarenal N(G)- nitro-L-arginine methyl ester (L-NAME) infusion (1 microg x kg(-1) x min(-1); n = 6) did not elicit renal hemodynamic changes and reduced (P < 0.01) the renal excretory response to ECVE. Intravenous nimesulide (5 microg x kg(-1) x min(-1); n = 6) did not modify renal hemodynamic and reduced (P < 0. 05) sodium excretion before ECVE. Simultaneous L-NAME and nimesulide infusion (n = 7) elicited an increment (37%) in renal vascular resistance (RVR; P < 0.05) before ECVE and no hemodynamic changes during ECVE. The reduced excretory response elicited by L-NAME and nimesulide was similar to that found during L-NAME infusion. Finally, simultaneous L-NAME and meclofenamate infusion (10 microg x kg(-1) x min(-1); n = 7) induced an increase in RVR (91%, P < 0.05), a decrease in glomerular filtration rate (35%, P < 0.05), and a reduction of the renal excretory response to ECVE that was greater (P < 0.05) than that elicited by L-NAME alone. The results obtained support the notion that PG involved in regulating renal hemodynamic and excretory function when NO synthesis is reduced are mainly dependent on COX-1 activity.  相似文献   

18.
Hypoxia/reoxygenation (H/R) elicits neuronal cell injury and glial cell activation within the central nervous system (CNS). Neuroinflammation is a process that primarily results from the acute or chronic activation of glial cells. This overactive state of glial cells results in the increased release of nitric oxide (NO) and/or tumor necrosis factor alpha (TNF-alpha), a process which can lead to neuronal damage or death. In this study, we found that hypoxia for eight or twelve hours (h) followed by 24 h reoxygenation (H8/ R24 or H12/R24) induced NO production and TNF-alpha release from cultures of enriched microglial or mixed glial cells. However, microglial cells could not survive longer periods of hypoxia (> or = 12 h) in microglia-enriched culture. While astrocytes retained a 95% viability following longer periods of H/R in astrocyte-enriched cultures, they did not produce any significant quantities of NO and TNF-alpha. Reoxygenation for prolonged periods (three and five days) following H24 resulted in progressively greater increases in NO production (about two-fold greater level in hypoxia as compared to normoxic conditions) accompanied by relatively less increases in TNF-alpha release in mixed glial cell cultures. Our data indicate that inflammatory mediators such as NO and TNF-alpha are released from glia-enriched mix culture in response to H/R. While microglial cells are more vulnerable than astrocytes during H/R, they survive longer in the presence of astrocyte and are the major cell type producing NO and TNF-alpha. Furthermore, the TNF-alpha release precedes NO production in response to a prolonged duration of reoxygenation following hypoxia for 24 h.  相似文献   

19.
SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52’s role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52low HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H2O2- or diamide-induced oxidative stress, IFN-α, IFN-γ and anti-Fas antibody, etoposide, or γ-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.  相似文献   

20.
Nitric oxide is an endogenous thiol-reactive molecule that modulates the functions of many regulatory proteins by a thiol-redox mechanism. NO has now been shown to inhibit the activation of apoptosis signal-regulating kinase 1 (ASK1) in murine fibrosarcoma L929 cells through such a mechanism. Exposure of L929 cells to interferon-gamma resulted in the endogenous production of NO and in inhibition of the activation of ASK1 by hydrogen peroxide. The interferon-gamma-induced inhibition of ASK1 activity was blocked by N(G)-nitro-l-arginine, an inhibitor of NO synthase. Furthermore, the NO donor S-nitro-N-acetyl-dl-penicillamine (SNAP) inhibited ASK1 activity in vitro, and this inhibition was reversed by thiol-reducing agents such as dithiothreitol and beta-mercaptoethanol. SNAP did not inhibit the kinase activities of MKK3, MKK6, or p38 in vitro. The inhibition of ASK1 by interferon-gamma was not changed by 1H- (1,2,4)oxadiazolo[4,3-alpha]quinoxalin-1-one, an inhibitor of guanylyl cyclase nor was it mimicked by 8-bromo-cyclic GMP. Site-directed mutagenesis revealed that replacement of cysteine 869 of ASK1 by serine rendered this protein resistant to the inhibitory effects both of interferon-gamma in intact cells and of SNAP in vitro. Co-immunoprecipitation data showed that NO production inhibited a binding of ASK1, but not ASK1(C869S), to MKK3 or MKK6. Moreover, interferon-gamma induced the S-nitrosylation of endogenous ASK1 in L929 cells. Together, these results suggest that NO mediates the interferon-gamma-induced inhibition of ASK1 in L929 cells through a thiolredox mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号