首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.  相似文献   

2.
3.
Isolation and characterization of functional mammary gland stem cells   总被引:12,自引:0,他引:12  
Abstract.  Significant advances in the stem-cell biology of several tissues, including the mammary gland, have occurred over the past several years. Recent progress on stem-cell fate determination, molecular markers, signalling pathways and niche interactions in haematopoietic, neuronal and muscle tissue may provide parallel insight into the biology of mammary epithelial stem cells. Taking advantage of approaches similar to those employed to isolate and characterize haematopoietic and epidermal stem cells, we have identified a mammary epithelial cell population with several stem/progenitor cell qualities. In this article, we review some recent data on mammary epithelial stem/progenitor cells in genetically engineered mouse models. We also discuss several potential molecular markers, including stem-cell antigen-1 (Sca-1), which may be useful for both the isolation of functional mammary epithelial stem/progenitor cells and the analysis of tumour aetiology and phenotype in genetically engineered mouse models. In different transgenic mammary tumour models, Sca-1 expression levels, as well as several other putative markers of progenitors including keratin-6, possess dramatically altered expression profiles. These data suggest that the heterogeneity of mouse models of breast cancer may partially reflect the selection or expansion of different progenitors.  相似文献   

4.
5.
Aberrant DNA methylation is an important cancer hallmark, yet the dynamics of DNA methylation changes in human carcinogenesis remain largely unexplored. Moreover, the role of DNA methylation for prediction of clinical outcome is still uncertain and confined to specific cancers. Here we perform the most comprehensive study of DNA methylation changes throughout human carcinogenesis, analysing 27,578 CpGs in each of 1,475 samples, ranging from normal cells in advance of non-invasive neoplastic transformation to non-invasive and invasive cancers and metastatic tissue. We demonstrate that hypermethylation at stem cell PolyComb Group Target genes (PCGTs) occurs in cytologically normal cells three years in advance of the first morphological neoplastic changes, while hypomethylation occurs preferentially at CpGs which are heavily Methylated in Embryonic Stem Cells (MESCs) and increases significantly with cancer invasion in both the epithelial and stromal tumour compartments. In contrast to PCGT hypermethylation, MESC hypomethylation progresses significantly from primary to metastatic cancer and defines a poor prognostic signature in four different gynaecological cancers. Finally, we associate expression of TET enzymes, which are involved in active DNA demethylation, to MESC hypomethylation in cancer. These findings have major implications for cancer and embryonic stem cell biology and establish the importance of systemic DNA hypomethylation for predicting prognosis in a wide range of different cancers.  相似文献   

6.
7.
8.
BRCA1 (breast cancer early-onset 1) alternative splicing levels are regulated in a cell-cycle- and cell-type-specific manner, with splice variants being present in different proportions in tumour cell lines as well as in normal mammary epithelial cells. The importance of this difference in the pathogenesis of breast cancer has yet to be determined. Developing an understanding of the impact of BRCA1 isoform ratio changes on cell phenotype will be of value in breast cancer and may offer therapeutic options. In the present paper, we describe the splicing isoforms of BRCA1 exon 11, their possible role in cancer biology and the importance of maintaining a balanced ratio.  相似文献   

9.
10.
A hypothesis is presented suggesting that initiation of breast epithelial cell freezes the cell at least partly according to the development/differention of cell at the time of initiation. Tumour biology will mimic the physiology of normal cell development at the time of initiation and this is preserved at least partly onwards. Also preferentially, tumours will develop from the cell type that is proliferating at the time of initiation. This may explain the overrepresentation of different types of histology in breast cancer in relation to age of the woman. The development of each tumour may follow at least partly a distinct pathway of evolution.  相似文献   

11.
The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical-basal polarity and cell-cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy.  相似文献   

12.
Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.  相似文献   

13.
Abnormalities in the interactions of cells with the extracellular matrix (ECM) play an important role in the development and progression of many types of cancer and are a hallmark of malignant transformation. The dystroglycan (DG) complex is a transmembrane glycoprotein that forms a continuous link from the ECM to the actin cytoskeleton, providing structural integrity and perhaps transducing signal, in a manner similar to integrins. Deregulated expression of DG has been reported in a variety of human malignancies and related to tumor differentiation and aggressiveness. In breast cancer, reduced DG expression has been associated with patient survival and with loss of differentiation of tumor cells. Limited data are available on DG physiology in epithelial cells. In this study, we used the HC11 spontaneously immortalized murine mammary epithelial cells to study DG function(s) and regulation in normal cells. We found that expression of DG protein and mRNA is cell-cycle and cell-density regulated in these cells. Moreover, expression of both DG subunits increased upon lactogenic differentiation of the HC11 cells. The turnover of cell-surface-expressed DG was evaluated in the same cells and half-life of DG subunits was evaluated to be about 12 h. DG-specific small inhibitory RNAs were used to analyze the effects of a reduced expression of DG in these cells. Cells in which DG expression was suppressed were growth inhibited, accumulated in the S-phase of the cell cycle, failed to undergo lactogenic differentiation, and displayed an increase in the percentage of apoptotic cells. Moreover, changes were observed in the expression and/or activity of several molecules involved in cell growth control. These results demonstrate that DG expression is tightly regulated in normal mammary epithelial cells and support the hypothesis that DG is involved in several functions other than structural integrity in these cells. This finding provides new insight into the roles played by DG in epithelial cell physiology and will contribute to our understanding of its involvement in the process of epithelial cell transformation.  相似文献   

14.
Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.  相似文献   

15.
A technique of fluorescence multiplexing is described for analysis of the plasma membrane proteome of colorectal cancer cells from surgically resected specimens, enabling detection and immunophenotyping when the cancer cells are in the minority. A single-cell suspension was prepared from a colorectal tumour, and the mixed population of cells was captured on a CD antibody microarray. The cancer cells were detected using a fluorescently tagged antibody for carcinoembryonic antigen (CEA-Alexa647) or epithelial cell adhesion marker (EpCAM-Alexa488). Using this multiplexing procedure, dot patterns from colorectal cancers were distinct from those of adjacent normal tissue. Subtraction of the expression levels for each antigen from normal tissue from those for the cancer shows differential expression in the cancer of CD66c, CD15s, CD55, CD45, CD71, CD45RO, CD11b and CEA, in descending order. Cells captured on the same microarray were also labelled with fluorescent CD3-phycoerythrin antibody revealing the presence of tumour-infiltrating lymphocytes. The immunophenotypes of T lymphocytes from the tumour samples showed differential expression of HLA-DR, TCR alpha/beta, CD49d, CD52, CD49e, CD5, CD95, CD28, CD38 and CD71, in descending order. Fluorescence multiplexing of mixed cell populations captured on a single antibody microarray enables expression profiling of multiple sub-populations of cells within a tumour sample.  相似文献   

16.
As regards their morphology and biology, tumours consist of heterogeneous cell populations. The cancer stem cell (CSC) hypothesis assumes that a tumour is hierarchically organized and not all of the cells are equally capable of generating descendants, similarly to normal tissue. The only cells being able to self-renew and produce a heterogeneous tumour cell population are cancer stem cells. CSCs probably derive from normal stem cells, although progenitor cells may be taken into consideration as the source of cancer stem cells. CSCs reside in the niche defined as the microenvironment formed by stromal cells, vasculature and extracellular matrix. The CSC assays include FACS sorting, xenotransplantation to immunodeficient mice (SCID), incubation with Hoechst 33342 dye, cell culture in non-adherent conditions, cell culture with bromodeoxyuridine. CSCs have certain properties that make them resistant to anticancer therapy, which suggests they may be the target for potential therapeutic strategies.  相似文献   

17.
18.
Lens epithelial cells are the parental cells responsible for growth and development of the transparent ocular lens. Many elegant investigations into their biology have focused on the factors that initiate and regulate lens epithelial cell differentiation. Because they serve key transport and cell maintenance functions throughout life, and are the primary source of metabolic activity in the lens, mechanisms to maintain lens epithelial cell integrity and survival are critical for lens transparency. The molecular chaperones alpha-crystallins are abundant proteins synthesized in the differentiated lens fiber cell cytoplasm. However, their expression in lens epithelial cells has only been appreciated very recently. Besides their important roles in the refractive and light focusing properties of the lens, alpha-crystallins have been implicated in a number of non-refractive pathways including those involving stress response, apoptosis and cell survival. The most convincing evidence for their importance in the lens epithelium has been shown by studies on the properties of lens epithelial cells from alphaA and alphaB-crystallin gene knockout mice. Novel combination of genetics, cell and molecular biology should lead to a greater understanding of how lens epithelial cells proliferate, differentiate and survive.  相似文献   

19.
The Ocular Lens Epithelium   总被引:5,自引:0,他引:5  
Bhat SP 《Bioscience reports》2001,21(4):537-563
An adult lens contains two easily discernible, morphologically distinct compartments, the epithelium and the fiber-cell mass. The fiber-cell mass provides the lens with its functional phenotype, transparency. Metabolically, in comparison to the fiber cells the epithelium is the more active compartment of the ocular lens. For the purposes of this review we will only discuss the surface epithelium that covers the anterior face of the adult ocular lens. This single layer of cells, in addition to acting as a metabolic engine that sustains the physiological health of this tissue, also works as a source of stem cells, providing precursor cells, which through molecular and morphological differentiation give rise to fiber cells. Morphological simplicity, defined developmental history and easy access to the experimenter make this epithelium a choice starting material for investigations that seek to address universal questions of cell growth, development, epithelial function, cancer and aging. There are two important aspects of the lens epithelium that make it highly relevant to the modern biologist. Firstly, there are no known clinically recognizable cancers of the ocular lens. Considering that most of the known malignancies are epithelial in origin this observation is more than an academic curiosity. The lack of vasculature in the lens may explain the absence of tumors in this tissue, but this provides only a teleological basis to a very important question for which the answers must reside in the molecular make-up and physiology of the lens epithelial cells. Secondly, lens epithelium as a morphological entity in the human lens is first recognizable in the 5th–6th week of gestation. It stays in this morphological state as the anterior epithelium of the lens for the rest of the life, making it an attractive paradigm for the study of the effects of aging on epithelial function. What follows is a brief overview of the present status and lacunae in our understanding of the biology of the lens epithelium.  相似文献   

20.
Our recent studies have shown that overexpression of aromatase results in increased tissue estrogenic activity and induction of hyperplastic and dysplastic lesions in female mammary glands and gynecomastia and testicular cancer in male aromatase transgenic mice. Both aromatase mRNA and protein are overexpressed in transgenic mammary glands and its expression is not limited to epithelial cells. However, it is more in epithelial than in stromal cells. Our results also indicate aromatase overexpression-induced changes in mammary glands can be abrogated with very low concentrations of the aromatase inhibitor, letrozole. Low concentration of letrozole had no effect on normal physiology as indicated by no significant change in the circulating levels of estradiol and follicle stimulating hormone as well as no change in estrogen responsive genes such as the progesterone receptor and lactoferrin in the uterine tissue. These observations indicate that the expression of aromatase in both epithelial and stromal cells can influence the complex interactions of biochemical pathways leading to mammary carcinogenesis and that the aromatase inhibitor, letrozole can be used as chemopreventive agents without affecting normal physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号