首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Recognition of pathogen‐associated molecular patterns (PAMPs) by surface‐localized pattern‐recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP‐triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co‐receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti‐bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A‐based regulation leads to increased steady‐state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface‐localized immune receptor complexes.  相似文献   

2.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

3.
每种病原菌都有一些保守的特征性分子,也称病原菌相关分子模式(PAMPs)。植物细胞表面的模式识别受体PRRs通过识别病原菌的PAMPs而激发免疫反应(PTI)。目前,已发现多种PRRs/PAMPs的识别模式,如拟南芥FLS2识别细菌鞭毛蛋白、拟南芥EFR识别细菌延长因子Tu(EF-Tu)、水稻CEBiP/CERK1识别真菌几丁质、水稻抗病蛋白XA21识别白叶枯病菌的硫化蛋白Ax21等。这些识别模式都能激发植物的基础免疫反应以抵抗病原菌的侵染。但是病原菌为了成功侵染寄主植物,也进化出一些致病机制,例如向植物细胞中注入毒性效应蛋白阻断PTI途径,或者产生一种"自我伪装"机制以逃避PRRs的识别。因此,研究者们根据PAMPs的结构特性对PRRs重新改造,以期使植物获得持久、广谱和高效的抗性。综述目前已知的PAMPs分子类型、PRRs/PAMPs的识别机制及改造后的新型PRRs,并分析PTI研究中存在的问题及其发展前景。  相似文献   

4.
Microbes generate a vast array of different types of conserved structural components called pathogen-associated molecular patterns(PAMPs),which canbe recognized by cells of the innate immune system.This recognition of "nonself" signatures occurs through host pattern recognition receptors(PRRs),suggesting that microbial-derived signals are good targets for innate immunity to discriminate between self- and nonself.Such PAMP-PRR interactions trigger multiple but distinct downstream signaling cascades,subsequently leading to production of proinflammatory cytokines and interferons that tailor immune responses to particular microbes.Aberrant PRR signals have been associated with various inflammatory diseases and fine regulation of PRR signaling is essential for avoiding excessive inflammatory immune responses and maintaining immune homeostasis.In this review we summarize the ligands and signal transduction pathways of PRRs and highlight recent progress of the mechanisms involved in microbe-specific innate immune recognition during immune responses and inflammation,which may provide new targets for therapeutic intervention to the inflammatory disorders.  相似文献   

5.
《Genomics》2020,112(3):2666-2676
In plant–pathogen interactions, plant immunity through pathogen-associated molecular pattern receptors (PAMPs) and R proteins, also called pattern recognition receptors (PRRs), occurs in different ways depending on both plant and pathogen species. The use and search for a structural pattern based on the presence and absence of characteristic domains, regardless of their disposition within a sequence, could be efficient in identifying PRRs proteins. Here, we develop a method mainly based on text mining and set theory to identify PRR and R genes that classify them into 13 categories based on the presence and absence of the main domains. Analyzing 24 plant and algae genomes, we showed that the RRGPredictor was more efficient, specific and sensitive than other tools already available, and identified PRR proteins with variations in size and in domain distribution throughout the sequence. Besides an easy identification of new plant PRRs proteins, RRGPredictor provided a low computational cost.  相似文献   

6.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

7.
Toll样受体(TLR)是一类模式识别受体,通过多种信号传递改善免疫系统功能,活化NF-κB信号通路,调节TNF-α、ILs和IFN-α等多种细胞因子分泌,在天然免疫系统中发挥重要作用,在免疫学及药物研究领域受到广泛关注。TLR种类众多,配体广泛,可以作为治疗微生物感染、炎症、自身免疫性疾病、 肿瘤及放射损伤等疾病的药物靶点,是免疫治疗的重要切入点。研究人员已经对数十种TLR靶向药物进行了研究。对TLR结构特征、信号传递以及靶向药物的特点和研究现状进行综述,分析其在免疫治疗方面的优劣势,也为下一步药物研究提供一定的理论依据。  相似文献   

8.
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand- activated PRRs and initiate pattern -triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.  相似文献   

9.
10.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Nod1 and Nod2 are members of the rapidly expanding family of NACHT domain-containing proteins involved in intracellular recognition of bacterial products. Nods proteins are involved in the cytosolic detection of peptidoglycan motifs of bacteria, recognized through the LRR domain. The role of the NACHT-LRR system of detection in innate immune responses is highlighted at the mucosal barrier, where most of the membranous Toll like receptors (TLRs) are not expressed, or with pathogens that have devised ways to escape TLR sensing. For a given pathogen, the sum of the pathways induced by the recognition of the different "pathogen associated molecular patterns" (PAMPs) by the different pattern recognition receptors (PRRs) trigger and shape the subsequent innate and adaptive immune responses. Knowledge gathered during the last decade on PRR and their agonists, and recent studies on bacterial infections provide new insights into the immune response and the pathogenesis of human infectious diseases.  相似文献   

11.
Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.  相似文献   

12.
13.
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) constitutes an important layer of innate immunity in plants. The leucine-rich repeat (LRR) receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN SENSING2 (FLS2) are the PRRs for the peptide PAMPs elf18 and flg22, which are derived from bacterial EF-Tu and flagellin, respectively. Using coimmunoprecipitation and mass spectrometry analyses, we demonstrated that EFR and FLS2 undergo ligand-induced heteromerization in planta with several LRR receptor-like kinases that belong to the SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family, including BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1/SERK3 (BAK1/SERK3) and BAK1-LIKE1/SERK4 (BKK1/SERK4). Using a novel bak1 allele that does not exhibit pleiotropic defects in brassinosteroid and cell death responses, we determined that BAK1 and BKK1 cooperate genetically to achieve full signaling capability in response to elf18 and flg22 and to the damage-associated molecular pattern AtPep1. Furthermore, we demonstrated that BAK1 and BKK1 contribute to disease resistance against the hemibiotrophic bacterium Pseudomonas syringae and the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Our work reveals that the establishment of PAMP-triggered immunity (PTI) relies on the rapid ligand-induced recruitment of multiple SERKs within PRR complexes and provides insight into the early PTI signaling events underlying this important layer of plant innate immunity.  相似文献   

14.
An efficient sensing of danger and a rapid activation of the immune system are crucial for the survival of plants. Conserved pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) and endogenous molecular patterns, which are present only when the tissue is infected or damaged (damage-associated molecular patterns or DAMPs), can act as danger signals and activate the plant immune response. These molecules are recognized by surface receptors that are indicated as pattern recognition receptors (PRRs). In this paper we summarize recent information on oligogalacturonides (OGs), a class of DAMPs that is released from the extracellular matrix of the plant cell during pathogen attack or wounding. We also describe the characteristics of the Arabidopsis Wall-Associated Kinase 1 (WAK1), a PRR recently identified as a receptor of OGs and discuss the use of WAK1, PRRs and chimeric receptors to engineer resistance in crop plants.  相似文献   

15.
Plants use pattern recognition receptors (PRRs) to perceive pathogen-associated molecular pattern (PAMPs) and initiate defence responses. PAMP-triggered immunity (PTI) plays an important role in general resistance, and constrains the growth of most microbes on plants. Despite the importance of PRRs in plant immunity, the vast majority of them remain to be identified. We recently showed that the Arabidopsis LysM receptor kinase CERK1 is required not only for chitin signalling and fungal resistance, but plays an essential role in restricting bacterial growth on plants. We proposed that CERK1 may mediate the perception of a bacterial PAMP, or an endogenous plant cell wall component released during infection, through its extracellular carbohydrate-binding LysM-motifs. Here we report reduced activation of a PAMP-induced defence response on plants lacking the CERK1 gene after treatment with crude bacterial extracts. This demonstrates that CERK1 mediates perception of an unknown bacterial PAMP in Arabidopsis.Key words: PAMP, PRR, PTI, LysM, chitin, bacteria, carbohydrate  相似文献   

16.
Plants and animals can recognize the invasion of pathogens through their perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs identified have been exclusively receptor-like kinases/proteins (RLK/Ps), and no RLK/P that can detect viruses has been identified to date. RNA silencing (RNA interference, RNAi) is regarded as an antiviral basal immunity because the majority of plant viruses has RNA as their genomes and encode RNA silencing suppressor (RSS) proteins to counterattack antiviral RNAi. Many RSSs were reported to bind to double-stranded RNAs (dsRNAs), which are regarded as viral PAMPs. We have recently identified a tobacco calmodulin (CaM)-like protein, rgs-CaM, as a PRR that binds to diverse viral RSSs through its affinity for the dsRNA-binding domains. Because rgs-CaM seems to target RSSs for autophagic degradation with self-sacrifice, the expression level of rgs-CaM is important for antiviral activity. Here, we found that the rgs-CaM expression was induced immediately (within 1 h) after wounding at a wound site on tobacco leaves. Since the invasion of plant viruses is usually associated with wounding, and several hours are required for viruses to replicate to a detectable level in invaded cells, the wound-induced expression of rgs-CaM seems to be linked to its antiviral function, which should be ready before the virus establishes infection. CaMs and CaM-like proteins usually transduce calcium signals through their binding to endogenous targets. Therefore, rgs-CaM is a unique CaM-like protein in terms of binding to exogenous targets and functioning as an antiviral PRR.  相似文献   

17.
Toll样受体与树突状细胞介导的天然免疫和获得性免疫   总被引:1,自引:0,他引:1  
树突状细胞(dendritic cells,DCs)作为迄今所发现的抗原提呈功能最强的一类抗原提呈细胞,是联结天然免疫和获得性免疫的桥梁。Toll样受体(Toll-like receptors,TLRs)是一类进化保守的胚系编码的模式识别受体,在DCs的抗原识别、递呈及激活T细胞等方面具有重要作用,是机体受外来抗原入侵后作出适当免疫反应的调控点。现就TLRs在不同DCs亚群中的分布、与DCs介导的天然免疫和获得性免疫的关系及DCs功能可塑性的分子基础作一综述。  相似文献   

18.
Innate immunity is an important part of immune system, providing immediate defence for the host against various infections through phagocytes. Toll-like receptors (TLRs) are major proteins expressed on the cell membrane known as pattern recognition receptors (PRR) that recognise non-self molecules (pathogen-associated molecular patterns (PAMPs)). Because TLRs have been implicated in many inflammatory diseases and cancer, TLRs targeted therapeutics have drawn great attention in clinical application in wide range of conditions. Many of them are undergoing evaluation in clinical trials. Chitin is the second most abundant polysaccharide detected in many insects and fungi. Studies have shown that chitin, as major PAMPs in host-infection, can activate TLR2-dependent innate immunity pathway. Therefore, chitin has potential use as an important agonist or antagonist to control key processes in innate immunity. However, no direct evidence has shown that chitin is the direct target of TLR2. This study first demonstrates a binding model of chitin and TLR2 and then confirmed its stability by molecular dynamic simulation and MM/PBSA (molecular mechanics/Poisson?Boltzmann surface area) calculations. The binding between chitin and TLR2 was taken place inside the binding pocket. Two hydrogen bonds were formed between chitin and TLR2, including Ser320 and Lys321. The van der Waals interaction has the major contribution in stabilising the binding of the chitin molecule with the protein. This study also suggests six hot-spots for specific binding of chitin in the binding site of TLR2, namely, Phe296, Phe299, Leu302, Thr309, Ser320 and Val322. Molecular dynamics simulation demonstrates that the complex of chitin and TLR2 is very stable with a total binding affinity of ?27.2 kcal/mol from MM/PBSA calculation.  相似文献   

19.
Of PAMPs and effectors: the blurred PTI-ETI dichotomy   总被引:1,自引:0,他引:1  
Typically, pathogen-associated molecular patterns (PAMPs) are considered to be conserved throughout classes of microbes and to contribute to general microbial fitness, whereas effectors are species, race, or strain specific and contribute to pathogen virulence. Both types of molecule can trigger plant immunity, designated PAMP-triggered and effector-triggered immunity (PTI and ETI, respectively). However, not all microbial defense activators conform to the common distinction between PAMPs and effectors. For example, some effectors display wide distribution, while some PAMPs are rather narrowly conserved or contribute to pathogen virulence. As effectors may elicit defense responses and PAMPs may be required for virulence, single components cannot exclusively be referred to by one of the two terms. Therefore, we put forward that the distinction between PAMPs and effectors, between PAMP receptors and resistance proteins, and, therefore, also between PTI and ETI, cannot strictly be maintained. Rather, as illustrated by examples provided here, there is a continuum between PTI and ETI. We argue that plant resistance is determined by immune receptors that recognize appropriate ligands to activate defense, the amplitude of which is likely determined by the level required for effective immunity.  相似文献   

20.
Toll样受体(TLRs)的信号转导与免疫调节   总被引:6,自引:0,他引:6  
Toll样受体(Toll-like receptors,TLRs)是进化中比较保守的一个受体家族,至少包括10个成员.TLRs能特异地识别病原相关的分子模式(PAMPs),不仅在激活天然免疫中发挥重要的作用,而且还调节获得性免疫,是连接天然免疫和获得性免疫的桥梁.近年来,TLRs信号转导的研究,特别是在负调控研究领域,进展非常迅速.对TLRs信号通路新进展以及TLRs在抗感染免疫中的作用进行了综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号