首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

[Purpose]

Several epidemiological studies have demonstrated that there are positive correlations between vascular disorders and bone loss in postmenopausal women. The aim of the present study was to examine the effect of different types of exercise (e.g., climbing and swimming) for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats.

[Methods]

Twenty Sprague-Dawley female rats were randomly divided into three groups: ovariectomy (OVX) plus treatment with vitamin D3 and nicotine (VDN) (control rats [Con], n = 7), which is an animal model for endothelial dysfunction and bone loss; voluntary climbing resistance exercise with OVX plus VDN (climbing rats [Clim], n = 6), and swimming exercise with OVX plus VDN (swimming rats [Swim], n = 7). The period of exercise training was 8 weeks.

[Results]

The endothelin-1 (ET-1) protein levels were significantly lower in the Clim and Swim groups than in the Con. The endothelial nitric oxide synthase protein levels were significantly higher in the Swim group than in the Con, but they did not differ between the Clim and Con groups. The cortical bone mineral density in the tibia and breaking energy of the femur were significantly higher in the Clim group than in the Con, but this positive effect was not seen in the Swim group.

[Conclusion]

Voluntary climbing exercise decreased arterial ET-1 protein levels and prevented bone loss in a postmenopause-model rat combining OVX and VDN. Conversely, swimming suppressed endothelial dysfunction of the arteries but did not prevent bone loss. Thus, the type of exercise should be cautiously chosen for enhancing vascular function and bone status, especially in females after menopause.  相似文献   

2.

Objective

In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress.

Methods

Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE).

Results

Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy.

Conclusions

Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.  相似文献   

3.

Aims

Portal hypertension characterized by generalized vasodilatation with endothelial dysfunction affecting nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) has been suggested to involve bacterial translocation and/or the angiotensin system. The possibility that ingestion of probiotics prevents endothelial dysfunction in rats following common bile duct ligation (CBDL) was evaluated.

Methods

Rats received either control drinking water or the probiotic VSL#3 solution (50 billion bacteria.kg body wt−1.day−1) for 7 weeks. After 3 weeks, rats underwent surgery with either resection of the common bile duct or sham surgery. The reactivity of mesenteric artery rings was assessed in organ chambers, expression of proteins by immunofluorescence and Western blot analysis, oxidative stress using dihydroethidium, and plasma pro-inflammatory cytokine levels by flow cytometry.

Results

Both NO- and EDH-mediated relaxations to acetylcholine were reduced in the CBDL group compared to the sham group, and associated with a reduced expression of Cx37, Cx40, Cx43, IKCa and SKCa and an increased expression of endothelial NO synthase (eNOS). In aortic sections, increased expression of NADPH oxidase subunits, angiotensin converting enzyme, AT1 receptors and angiotensin II, and formation of ROS and peroxynitrite were observed. VSL#3 prevented the deleterious effect of CBDL on EDH-mediated relaxations, vascular expression of connexins, IKCa, SKCa and eNOS, oxidative stress, and the angiotensin system. VSL#3 prevented the CBDL-induced increased plasma TNF-α, IL-1α and MCP-1 levels.

Conclusions

These findings indicate that VSL#3 ingestion prevents endothelial dysfunction in the mesenteric artery of CBDL rats, and this effect is associated with an improved vascular oxidative stress most likely by reducing bacterial translocation and the local angiotensin system.  相似文献   

4.

Background

The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS) may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF) diet.

Methods

C57BL/6 mice fed a HF diet (8 weeks) were treated with aliskiren (50 mg/kg/day), enalapril (30 mg/kg/day) or losartan (10 mg/kg/day) for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis.

Results

All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM) gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression.

Conclusion

Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7) /Mas receptor axis and adiponectin levels.  相似文献   

5.

Objectives

Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling.

Methods

An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells.

Results

Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner.

Conclusions

Taken together, these results suggest that SA may have beneficial role in the treatment of hypertensive heart disease by attenuating fibrosis and oxidative stress through its antioxidant potential.  相似文献   

6.

Purpose

The purpose of this study was to determine the interaction effects of aerobic exercise training and vitamin D supplementation on indices of obesity and plasma lipid profiles in ovariectomized (OVX) rats.

Methods

Forty female Wistar rats were divided into 5 groups: aerobic training (3 days/week for 8 weeks; AT; n = 8), aerobic training and vitamin D supplementation (OVX + AT + Vit D; n = 8), vitamin D supplementation (OVX + Vit D; n = 8), ovariectomized control (OVX + C, n = 8) and SHAM (n = 8). After blood sampling, visceral fat was taken from the abdominal cavity and weighed immediately. Data was statistically analyzed by One-way ANOVA and Repeated measure ANOVA tests with a 0.05 significance level.

Results

Body weight, visceral fat, BMI and food intake decreased significantly in OVX + AT + Vit D (P < 0.001); whereas these variables increased significantly in OVX + C (P < 0.001) and SHAM (P < 0.023) groups. At the end of two-months of follow-up, we observed significant differences in TC, TG, HDL-C, LDL-C, glucose, insulin, and HOMA-IR in all groups.

Conclusion

It seems that aerobic training with vitamin D, due to the involvement of muscle mass and exposure to dynamic pressure on the bones and muscles, increased energy expenditure, stimulated insulin exudation and glucose homeostasis, decreased insulin resistance and improved the lipid profile in ovariectomized rats.  相似文献   

7.

[Purpose]

Vascular endothelial dysfunction is an early marker of atherosclerosis characterized by decreased nitric oxide bioavailability in the vascular endothelium and smooth muscle cells. Recently, some animal models and in vitro trials demonstrated that excessive superoxide production from mitochondria within vascular endothelial cells played a role in the pathogenesis of atherosclerosis in type 2 diabetes. This review provides a systematic assessment of the effectiveness of exercise to identify effective approaches to recognize diabetes risk and prevent progression to heart disease.

[Methods]

A systematic literature search was conducted to retrieve articles from 1979 to 2013 using the following databases: the MEDLINE, PubMed. Articles had to describe an intervention that physical activity and exercise to identify effective approaches to heart and vascular endothelium.

[Results]

Currently, physical activity and exercise guidelines aimed to improve cardiovascular health in patients with type 2 diabetes are nonspecific. Benefit of aerobic exercise training on vascular endothelial function in type 2 diabetic patients is still controversial.

[Conclusion]

it is necessary to demonstrate the mechanism of endothelial dysfunction from live human tissues so that we can provide more specific exercise training regimens to enhance cardiovascular health in type 2 diabetic patients.  相似文献   

8.
9.

Background & Aims

Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs). This study aims to investigate the effects of FAEEs on barrier function, and to explore the role of oxidative stress as possible mechanism.

Methods

Epithelial permeability was assessed by paracellular flux of fluorescein isothiocyanate-conjugated dextran using live cell imaging. Cell integrity was evaluated by lactate dehydrogenase release. Localization and protein levels of ZO-1 and occludin were analyzed by immunofluorescence and cell-based ELISA, respectively. Intracellular oxidative stress and cellular ATP levels were measured by dichlorofluorescein and luciferase driven bioluminescence, respectively.

Results

In vitro, ethyl oleate and ethyl palmitate dose dependently increased permeability associated with disruption and decreased ZO-1 and occludin protein levels, respectively, and increased intracellular oxidative stress without compromising cell viability. These effects could partially be attenuated by pretreatment with the antioxidant, resveratrol, pointing to the role of oxidative stress in the FAEEs-induced intestinal barrier dysfunction.

Conclusions

These findings show that FAEEs can induce intestinal barrier dysfunction by disrupting the tight junctions, most likely via reactive oxygen species-dependent mechanism.  相似文献   

10.

Background

Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH.

Methods

The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB.

Results

HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB.

Conclusion

In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.  相似文献   

11.

Background

Cadmium (Cd) is a nonessential heavy metal, causing oxidative damage to various tissues and associated with hypertension. Tetrahydrocurcumin (THU), a major metabolite of curcumin, has been demonstrated to be an antioxidant, anti-diabetic, anti-hypertensive and anti-inflammatory agent. In this study, we investigated the protective effect of THU against Cd-induced hypertension, raised arterial stiffness and vascular remodeling in mice.

Methods

Male ICR mice received CdCl2 (100 mg/l) via drinking water for 8 weeks. THU was administered intragastrically at dose of 50 or 100 mg/kg/day concurrently with Cd treatment.

Results

Administration of CdCl2 significantly increased arterial blood pressure, blunted vascular responses to vasoactive agents, increased aortic stiffness, and induced hypertrophic aortic wall remodeling by increasing number of smooth muscle cells and collagen deposition, decreasing elastin, and increasing matrix metalloproteinase (MMP)-2 and MMP-9 levels in the aortic medial wall. Supplementation with THU significantly decreased blood pressure, improved vascular responsiveness, and reversed the structural and mechanical alterations of the aortas, including collagen and elastin deposition. The reduction on the adverse response of Cd treatment was associated with upregulated eNOS and downregulated iNOS protein expressions, increased nitrate/nitrite level, alleviated oxidative stress and enhanced antioxidant glutathione. Moreover, THU also reduced the accumulation of Cd in the blood and tissues.

Conclusions

Our results suggest that THU ameliorates cadmium-induced hypertension, vascular dysfunction, and arterial stiffness in mice through enhancing NO bioavailability, attenuating oxidative stress, improving vascular remodeling and decreasing Cd accumulation in other tissues. THU has a beneficial effect in moderating the vascular alterations associated with Cd exposure.  相似文献   

12.

Background

The genetic background of atherosclerosis in type 2 diabetes mellitus (T2DM) is complex and poorly understood. Studying genetic components of intermediate phenotypes, such as endothelial dysfunction and oxidative stress, may aid in identifying novel genetic components for atherosclerosis in diabetic patients.

Methods

Five polymorphisms forming two haplotype blocks within the GTP cyclohydrolase 1 gene, encoding a rate limiting enzyme in tetrahydrobiopterin synthesis, were studied in the context of flow and nitroglycerin mediated dilation (FMD and NMD), intima-media thickness (IMT), and plasma concentrations of von Willebrand factor (vWF) and malondialdehyde (MDA).

Results

Rs841 was associated with FMD (p = 0.01), while polymorphisms Rs10483639, Rs841, Rs3783641 (which form a single haplotype) were associated with both MDA (p = 0.012, p = 0.0015 and p = 0.003, respectively) and vWF concentrations (p = 0.016, p = 0.03 and p = 0.045, respectively). In addition, polymorphism Rs8007267 was also associated with MDA (p = 0.006). Haplotype analysis confirmed the association of both haplotypes with studied variables.

Conclusions

Genetic variation of the GCH1 gene is associated with endothelial dysfunction and oxidative stress in T2DM patients.  相似文献   

13.

[Purpose]

The effect of dehydroepiandrosterone (DHEA) administration on intestinal Calcium (Ca) absorption in estrogen deficiency state has not been studied yet. We examined the bone mineral content (BMC) of lumbar spine and Ca balance such as intestinal Ca absorption and Ca accumulation in ovariectomized (OVX) rats after 8 weeks of DHEA administration.

[Methods]

Seventeen female Sprague-Dawley rats, 6 weeks old, were randomized into two groups: OVX control rats (OC, n = 8) and OVX rats with DHEA treatment (OD, n = 9). DHEA was administered to the OD group intraperitoneally at 20 mg DHEA/kg body weight for 8 weeks while the OC group was treated with vehicle only.

[Results]

The BMC normalized by body weight of the lumbar spine (trabecular-abundant region) in the OD group was found to be significantly higher compared to that in the OC group. The femoral wet weight normalized by body weight in the OD group was significantly higher compared to that in the OC group. The intestinal Ca absorption, rate of intestinal Ca absorption, Ca accumulation, and rate of Ca accumulation decreased from the 4th and 5th of the experimental diet period to the end of the experimental period, but interaction of time and group was not observed. In both periods, all parameters did not differ between the groups.

[Conclusion]

The present study confirmed the positive effect of DHEA on trabecular bone mass in ovariectomized rats. On the other hand, DHEA administration might have limited the impact on intestinal Ca absorption in estrogen deficiency state.  相似文献   

14.

Background

High fat meal challenges are known to induce postprandial low-grade inflammation and endothelial dysfunction. This assumption is largely based on studies performed in older populations or in populations with a progressed disease state and an appropriate control meal is often lacking. Young healthy individuals might be more resilient to such challenges. We therefore aimed to characterize the vascular and inflammatory response after a high fat meal in young healthy individuals.

Methods

In a double-blind randomized cross-over intervention study, we used a comprehensive phenotyping approach to determine the vascular and inflammatory response after consumption of a high fat shake and after an average breakfast shake in 20 young healthy subjects. Both interventions were performed three times.

Results

Many features of the vascular postprandial response, such as FMD, arterial stiffness and micro-vascular skin blood flow were not different between shakes. High fat/high energy shake consumption was associated with a more pronounced increase in blood pressure, heart rate, plasma concentrations of IL-8 and PBMCs gene expression of IL-8 and CD54 (ICAM-1), whereas plasma concentrations of sVCAM1 were decreased compared to an average breakfast.

Conclusion

Whereas no difference in postprandial response were observed on classical markers of endothelial function, we did observe differences between consumption of a HF/HE and an average breakfast meal on blood pressure and IL-8 in young healthy volunteers. IL-8 might play an important role in dealing with high fat challenges and might be an early marker for endothelial stress, a stage preceding endothelial dysfunction.

Trial Registration

ClinicalTrials.gov NCT00766623  相似文献   

15.

Context

Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress.

Objective

The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated.

Design and setting

A multi-centre, cross-sectional case-control study was performed.

Patients

Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women.

Main outcome measures

Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells.

Results

Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population.

Conclusions

Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.  相似文献   

16.

Objective

Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes.

Methods and Results

Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls.

Conclusions

The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.  相似文献   

17.
Wang Q  Zhang M  Liang B  Shirwany N  Zhu Y  Zou MH 《PloS one》2011,6(9):e25436

Aims

Berberine, a botanical alkaloid purified from Coptidis rhizoma, is reported to activate the AMP-activated protein kinase (AMPK). Whether AMPK is required for the protective effects of berberine in cardiovascular diseases remains unknown. This study was designed to determine whether AMPK is required for berberine-induced reduction of oxidative stress and atherosclerosis in vivo.

Methods

ApoE (ApoE-/-) mice and ApoE-/-/AMPK alpha 2-/- mice that were fed Western diets were treated with berberine for 8 weeks. Atherosclerotic aortic lesions, expression of uncoupling protein 2 (UCP2), and markers of oxidative stress were evaluated in isolated aortas.

Results

In ApoE-/- mice, chronic administration of berberine significantly reduced aortic lesions, markedly reduced oxidative stress and expression of adhesion molecules in aorta, and significantly increased UCP2 levels. In contrast, in ApoE-/-/AMPK alpha 2-/- mice, berberine had little effect on those endpoints. In cultured human umbilical vein endothelial cells (HUVECs), berberine significantly increased UCP2 mRNA and protein expression in an AMPK-dependent manner. Transfection of HUVECs with nuclear respiratory factor 1 (NRF1)-specific siRNA attenuated berberine-induced expression of UCP2, whereas transfection with control siRNA did not. Finally, berberine promoted mitochondrial biogenesis that contributed to up-regulation of UCP2 expression.

Conclusion

We conclude that berberine reduces oxidative stress and vascular inflammation, and suppresses atherogenesis via a mechanism that includes stimulation of AMPK-dependent UCP2 expression.  相似文献   

18.

Background

The association between intravenous (IV) iron administration and outcomes in hemodialysis (HD) patients is still debated. Therefore, this study was aimed to assess the relationship between the IV administration of ferric chloride hexahydrate (Atofen®) and cardiovascular (CV) outcome and the interaction between iron-induced oxidative stress and endothelial dysfunction in chronic HD patients.

Methodology/Principal Findings

A cohort of 1239 chronic HD patients was recruited. In a follow-up of 12 months, Kaplan-Meier survival curves showed that higher doses of IV Atofen associated with higher risks for CV events and deaths in HD patients. In multivariate Cox models, compared to no iron supplementation, IV Atofen administration was an independent predictor for CV events and overall mortality. However, the nature of the observational cohort study possibly bears selection bias. We further found that IV Atofen enhanced the superoxide production of mononuclear cells (MNCs), the levels of circulating soluble adhesion molecules, and the adhesion of MNCs to human aortic endothelial cells (HAECs). In vitro experiments showed that Atofen increased the expression of intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 in HAECs and aggravated the endothelial adhesiveness in a dose-dependent manner. These iron-induced changes were significantly attenuated by the co-treatment of HAECs with N-acetylcysteine and inhibitors of NADPH oxidase, nuclear factor κB, and activator protein-1.

Conclusion

A cumulative dose of IV Atofen >800 mg within 6 months was associated with an adverse CV outcome and a higher mortality among chronic HD patients. The detrimental effects of IV iron supplementation were partly due to the increased oxidative stress and induction of MNC adhesion to endothelial cells, a pivotal index of early atherogenesis.  相似文献   

19.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

20.

Background

Heme oxygenase (HO) degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development.

Methods

Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex) till postnatal 14 days, and evaluated for lung development.

Results

Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment.

Conclusions

These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号