首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hock K  Fefferman NH 《PloS one》2011,6(10):e26652
Social networks rely on basic rules of conduct to yield functioning societies in both human and animal populations. As individuals follow established rules, their behavioral decisions shape the social network and give it structure. Using dynamic, self-organizing social network models we demonstrate that defying conventions in a social system can affect multiple levels of social and organizational success independently. Such actions primarily affect actors' own positions within the network, but individuals can also affect the overall structure of a network even without immediately affecting themselves or others. These results indicate that defying the established social norms can help individuals to change the properties of a social system via seemingly neutral behaviors, highlighting the power of rule-breaking behavior to transform convention-based societies, even before direct impacts on individuals can be measured.  相似文献   

2.
Social animals vary in their ability to compete with group members over shared resources and also vary in their cooperative efforts to produce these resources. Competition among groups can promote within‐group cooperation, but many existing models of intergroup cooperation do not explicitly account for observations that group members invest differentially in cooperation and that there are often within‐group competitive or power asymmetries. We present a game theoretic model of intergroup competition that investigates how such asymmetries affect within‐group cooperation. In this model, group members adopt one of two roles, with relative competitive efficiency and the number of individuals varying between roles. Players in each role make simultaneous, coevolving decisions. The model predicts that although intergroup competition increases cooperative contributions to group resources by both roles, contributions are predominantly from individuals in the less competitively efficient role, whereas individuals in the more competitively efficient role generally gain the larger share of these resources. When asymmetry in relative competitive efficiency is greater, a group's per capita cooperation (averaged across both roles) is higher, due to increased cooperation from the competitively inferior individuals. For extreme asymmetry in relative competitive efficiency, per capita cooperation is highest in groups with a single competitively superior individual and many competitively inferior individuals, because the latter acquiesce and invest in cooperation rather than within‐group competition. These predictions are consistent with observed features of many societies, such as monogynous Hymenoptera with many workers and caste dimorphism.  相似文献   

3.
Hock K  Ng KL  Fefferman NH 《PloS one》2010,5(12):e15789
Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against) social behaviors that concordantly increase (or decrease, respectively) fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness.  相似文献   

4.
Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical models such as the prisoner's dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately (Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more general, we demonstrate that in prisoner's dilemma type interactions spatial structure benefits cooperation-although the parameter range is quite limited-whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be detrimental to cooperation.  相似文献   

5.
Human cooperation is typically coordinated by institutions, which determine the outcome structure of the social interactions individuals engage in. Explaining the Neolithic transition from small‐ to large‐scale societies involves understanding how these institutions co‐evolve with demography. We study this using a demographically explicit model of institution formation in a patch‐structured population. Each patch supports both social and asocial niches. Social individuals create an institution, at a cost to themselves, by negotiating how much of the costly public good provided by cooperators is invested into sanctioning defectors. The remainder of their public good is invested in technology that increases carrying capacity, such as irrigation systems. We show that social individuals can invade a population of asocials, and form institutions that support high levels of cooperation. We then demonstrate conditions where the co‐evolution of cooperation, institutions, and demographic carrying capacity creates a transition from small‐ to large‐scale social groups.  相似文献   

6.
Geographic constraints on social network groups   总被引:3,自引:0,他引:3  
Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on social group structure. We construct a social network of individuals whose most frequent geographical locations are also known. We also classify the individuals into groups according to a community detection algorithm. We study the variation of geographical span for social groups of varying sizes, and explore the relationship between topological positions and geographic positions of their members. We find that small social groups are geographically very tight, but become much more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological positions and geographic positions of individuals within network communities. These results suggest that spreading processes face distinct structural and spatial constraints.  相似文献   

7.
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.  相似文献   

8.
Social structures such as families emerge as outcomes of behavioural interactions among individuals, and can evolve over time if families with particular types of social structures tend to leave more individuals in subsequent generations. The social behaviour of interacting individuals is typically analysed as a series of multiple dyadic (pair-wise) interactions, rather than a network of interactions among multiple individuals. However, in species where parents feed dependant young, interactions within families nearly always involve more than two individuals simultaneously. Such social networks of interactions at least partly reflect conflicts of interest over the provision of costly parental investment. Consequently, variation in family network structure reflects variation in how conflicts of interest are resolved among family members. Despite its importance in understanding the evolution of emergent properties of social organization such as family life and cooperation, nothing is currently known about how selection acts on the structure of social networks. Here, we show that the social network structure of broods of begging nestling great tits Parus major predicts fitness in families. Although selection at the level of the individual favours large nestlings, selection at the level of the kin-group primarily favours families that resolve conflicts most effectively.  相似文献   

9.
Social life is regulated by norms of fairness that constrain selfish behavior. While a substantial body of scholarship on prosocial behavior has provided evidence of such norms, large inter- and intra-personal variation in prosocial behavior still needs to be explained. The article identifies two social-structural dimensions along which people''s generosity varies systematically: group attachment and social position. We conducted lab-in-the-field experiments involving 2,597 members of producer organizations in rural Uganda. Using different variants of the dictator game, we demonstrate that group attachment positively affects prosocial behavior, and that this effect is not simply the by-product of the degree of proximity between individuals. Second, we show that occupying a formal position in an organization or community leads to greater generosity toward in-group members. Taken together, our findings show that prosocial behavior is not an invariant social trait; rather, it varies according to individuals'' relative position in the social structure.  相似文献   

10.
Social animals have to take into consideration the behaviour of conspecifics when making decisions to go by their daily lives. These decisions affect their fitness and there is therefore an evolutionary pressure to try making the right choices. In many instances individuals will make their own choices and the behaviour of the group will be a democratic integration of everyone’s decision. However, in some instances it can be advantageous to follow the choice of a few individuals in the group if they have more information regarding the situation that has arisen. Here I provide early evidence that decisions about shifts in activity states in a population of bottlenose dolphin follow such a decision-making process. This unshared consensus is mediated by a non-vocal signal, which can be communicated globally within the dolphin school. These signals are emitted by individuals that tend to have more information about the behaviour of potential competitors because of their position in the social network. I hypothesise that this decision-making process emerged from the social structure of the population and the need to maintain mixed-sex schools.  相似文献   

11.
Animal social networks can be extremely complex and are characterized by highly non-random interactions between group members. However, very little is known about the underlying factors affecting interaction preferences, and hence network structure. One possibility is that behavioural differences between individuals, such as how bold or shy they are, can affect the frequency and distribution of their interactions within a network. We tested this using individually marked three-spined sticklebacks (Gasterosteus aculeatus), and found that bold individuals had fewer overall interactions than shy fish, but tended to distribute their interactions more evenly across all group members. Shy fish, on the other hand, tended to associate preferentially with a small number of other group members, leading to a highly skewed distribution of interactions. This was mediated by the reduced tendency of shy fish to move to a new location within the tank when they were interacting with another individual; bold fish showed no such tendency and were equally likely to move irrespective of whether they were interacting or not. The results show that animal social network structure can be affected by the behavioural composition of group members and have important implications for understanding the spread of information and disease in social groups.  相似文献   

12.
There is great interest in environmental effects on the development and evolution of animal personality traits. An important component of an individual's environment is its social environment. However, few studies look beyond dyadic relationships and try to place the personality of individuals in the context of a social network. Social network analysis provides us with many new metrics to characterize the social fine-structure of populations and, therefore, with an opportunity to gain an understanding of the role that different personalities play in groups, communities and populations regarding information or disease transmission or in terms of cooperation and policing of social conflicts. The network position of an individual is largely a consequence of its interactive strategies. However, the network position can also shape an individual's experiences (especially in the case of juveniles) and therefore can influence the way in which it interacts with others in future. Finally, over evolutionary time, the social fine-structure of animal populations (as quantified by social network analysis) can have important consequences for the evolution of personalities-an approach that goes beyond the conventional game-theoretic analyses that assumed random mixing of individuals in populations.  相似文献   

13.
Consistent individual differences in behavioural types may not only cause variation in life-history decisions, but may also affect the choice of social partners and sociality in general. Here, we tested whether and how behavioural type influences the establishment of social ties using the cooperatively breeding cichlid, Neolamprologus pulcher. In a habitat saturation experiment with individuals pre-tested for behavioural type, we first analysed whether behavioural type affected the likelihood of settlement (i.e. social status), group sizes, and the types of dominant and subordinate individuals accepted as group members. Corrected for effects of body size and sex, the behavioural type did not affect settlement. However, bold dominant males only accepted smaller females, and grouped with bold subordinates, while shy dominant males accepted larger females than themselves, and grouped with shy subordinates. Second, we analysed the relationships between behavioural type and the aggressiveness or affiliation social network. Behavioural type significantly affected the number and quality of connections within the two networks. We show that behavioural types affect group composition, social networks and status achieved, in interaction with body size. Thus, the interactions within groups may depend not only on age, size and sex, but also on the behavioural type of the individuals involved.  相似文献   

14.
In this paper five conditions are specified which must be met before reciprocal altruism, rather than kin selection, should be invoked. Four purported mammalian examples— social grooming in coati, cluster position in roosting pallid bats, information exchange among greater spear-nosed bats, and blood regurgitation among vampire bats—are examined to determine if reciprocal altruism is necessary to plausibly explain each situation. Results from a computer simulation which apportions the relative selective advantage of vampire bat food sharing to kin selection and reciprocal altruism are then presented. The results demonstrate that the increase in individual survivorship due to reciprocal food sharing events in this species provides a greater increase in inclusive fitness than can be attributed to aiding relatives. This analysis suggests that reciprocal altruism can be selectively more important than kin selection when altruistic behaviors in a relatively large social group occur frequently and provide a major fitness benefit to the recipient even when that recipient is related to the donor.  相似文献   

15.
Social network analysis is increasingly common in studying complex interactions among individuals. Across a range of primates, high-ranking adults are generally more socially connected, which results in better fitness outcomes. However, it still remains unclear whether this relationship between social network position and dominance rank emerges in infancy and whether, in species with a social transmission of dominance rank, social network positions are driven by the presence of the mother. To fill this gap, we first explored whether dominance ranks were related to social network position, measured via eigenvector centrality, in infants, juveniles, and adults in a troop of semi-free-ranging rhesus macaques (Macaca mulatta). We then examined relationships between dominance rank and eigenvector centrality in a peer-only group of yearlings who were reared with their mothers in either a rich, socially complex environment of multigenerational (MG) kin support or a unigenerational group of mothers and their infants from birth through 8 months. In Experiment 1, we found that mother's network position predicted offspring network position and that dominants across all age categories were more central in affiliative networks (social contact, social grooming, and social play). Experiment 2 showed that high-ranking yearlings in a peer-only group were more central only in the social contact network. Moreover, yearlings reared in a socially complex environment of MG kin support were more central. Our findings suggest that the relationship between dominance rank and social network position begins early in life, and that complex early social environments can promote later social competency. Our data add to the growing body of evidence that the presence/absence of the mother and kin influence how dominance rank affects social network position. These findings have important implications for the role of caregivers in the social status of developing primates, which ultimately ties to health and fitness outcomes.  相似文献   

16.
We present a simple, general model of how the optimal levelof intra-group aggression should vary in different social contexts.A key component of this model is the value of the recipientof aggression to a potential aggressor (i.e., the ratio of expectedlong-term group productivity with the recipient present to theexpected group productivity with the recipient absent). Therecipient's value measures its contribution to group reproductivesuccess. We demonstrate theoretically that if aggression increasesthe aggressor's share of the group's expected total reproductiveoutput, but at the same time decreases the magnitude of thisoverall reproductive output, then the optimal level of aggressiontoward a recipient will decrease with increasing recipient'svalue. This proof establishes a rigorous theoretical connectionbetween the level of aggression within a group and the benefitsof belonging to such a group and can be tested by experimentallymanipulating the values of group members to each other. We test,and thus illustrate the utility of, this model by examiningaggression within experimentally-manipulated foundress associationsof social wasps. We show that the value of co-foundresses toeach other in the social wasp Polistes fuscatus lies in theirability to provide insurance against colony failure caused bythe loss of all tending foundresses. Removals of worker-destinedeggs and pupae, which increase the value of co-foundresses,both lead to significant reductions in aggression by the dominantfoundress, despite the fact that the immediate, selfish benefitsof competitive aggression should increase when empty brood cellsare present Removal of reproductive-destined eggs, which doesnot affect co-foundress value, but increases the benefits ofselfish aggression, causes a significant increase in aggressionby beta foundresses. Finally, wing reduction of subordinateco-foundresses significantly increases aggression by dominantfoundresses, as expected since the subordinate's value is reduced.Our results indicate that foundress aggression is sensitiveto the value of future cooperation, as predicted by the optimalaggression model. The model may apply widely to both invertebrateand vertebrate societies  相似文献   

17.
Numerous factors affect the fine-scale social structure of animal groups, but it is unclear how important such factors are in determining how individuals encounter resources. Familiarity affects shoal choice and structure in many social fishes. Here, we show that familiarity between shoal members of sticklebacks (Gasterosteus aculeatus) affects both fine-scale social organization and the discovery of resources. Social network analysis revealed that sticklebacks remained closer to familiar than to unfamiliar individuals within the same shoal. Network-based diffusion analysis revealed that there was a strong untransmitted social effect on patch discovery, with individuals tending to discover a task sooner if a familiar individual from their group had previously done so than if an unfamiliar fish had done so. However, in contrast to the effect of familiarity, the frequency with which individuals had previously associated with one another had no effect upon the likelihood of prey patch discovery. This may have been due to the influence of fish on one another''s movements; the effect of familiarity on discovery of an empty ‘control’ patch was as strong as for discovery of an actual prey patch. Our results demonstrate that factors affecting fine-scale social interactions can also influence how individuals encounter and exploit resources.  相似文献   

18.
Individual acts of cooperation give rise to dynamic social networks. Traditionally, models for cooperation in structured populations are based on a separation of individual strategies and of population structure. Individuals adopt a strategy—typically cooperation or defection, which determines their behaviour toward their neighbours as defined by an interaction network. Here, we report a behavioural experiment that amalgamates strategies and structure to empirically investigate the dynamics of social networks. The action of paying a cost c to provide a benefit b is represented as a directed link point from the donor to the recipient. Participants can add and/or remove links to up to two recipients in each round. First, we show that dense networks emerge, where individuals are characterized by fairness: they receive to the same extent they provide. More specifically, we investigate how participants use information about the generosity and payoff of others to update their links. It turns out that aversion to payoff inequity was the most consistent update rule: adding links to individuals that are worse off and removing links to individuals that are better off. We then investigate the effect of direct reciprocation, showing that the possibility of direct reciprocation does not increase cooperation as compared to the treatment where participants are totally unaware of who is providing benefits to them.  相似文献   

19.
In group‐living species, the degree of relatedness among group members often governs the extent of reproductive sharing, cooperation and conflict within a group. Kinship among group members can be shaped by the presence and location of neighbouring groups, as these provide dispersal or mating opportunities that can dilute kinship among current group members. Here, we assessed how within‐group relatedness varies with the density and position of neighbouring social groups in Neolamprologus pulcher, a colonial and group‐living cichlid fish. We used restriction site‐associated DNA sequencing (RADseq) methods to generate thousands of polymorphic SNPs. Relative to microsatellite data, RADseq data provided much tighter confidence intervals around our relatedness estimates. These data allowed us to document novel patterns of relatedness in relation to colony‐level social structure. First, the density of neighbouring groups was negatively correlated with relatedness between subordinates and dominant females within a group, but no such patterns were observed between subordinates and dominant males. Second, subordinates at the colony edge were less related to dominant males in their group than subordinates in the colony centre, suggesting a shorter breeding tenure for dominant males at the colony edge. Finally, subordinates who were closely related to their same‐sex dominant were more likely to reproduce, supporting some restraint models of reproductive skew. Collectively, these results demonstrate that within‐group relatedness is influenced by the broader social context, and variation between groups in the degree of relatedness between dominants and subordinates can be explained by both patterns of reproductive sharing and the nature of the social landscape.  相似文献   

20.
In this paper, we study the spread of social norms, such as rules and customs that are components of human cultures. We consider the spread of two social norms, which are linked through individual behaviors. Spreading social norms depend not only on the social network structure, but also on the learning system. We consider four social network structures: (1) complete mixing, in which each individual interacts with the others at random, (2) lattice, in which each individual interacts with its neighbors with some probability and with the others at random, (3) power-law network, in which a few influential people have more social contacts than the others, and (4) random graph network, in which the number of contacts follows a Poisson distribution. Using the lattice model, we also investigate the effect of the small-world phenomenon on the dynamics of social norms. In our models, each individual learns a social norm by trial and error (individual learning) and also imitates the other's social norm (social learning). We investigate how social network structure and learning systems affect the spread of two linked social norms. Our main results are: (1) Social learning does not lead to coexistence of social norms. Individual learning produces coexistence, and the dynamics of coexistence depend on which social norms are learned individually. (2) Social norms spread fastest in the power-law network model, followed by the random graph model, the complete mixing model, the two-dimensional lattice model and the one-dimensional lattice. (3) We see a "small world effect" in the one-dimensional model, but not in two dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号