首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study deals with the decolorisation, biodegradation and detoxification of Direct Black-38, a benzidine based azo dye, by a mixed microbial culture isolated from an aerobic bioreactor treating textile wastewater. The studies revealed a biotransformation of Direct Black-38 into benzidine and 4-aminobiphenyl followed by complete decolorisation and biodegradation of these toxic intermediates. From cytotoxicity studies, it was concluded that detoxification of the dye took place after degradation of the toxic intermediates by the culture.  相似文献   

2.
Metabolites of azo dyes are often carcinogenic, teratogenic, mutagenic and recalcitrant in nature. In this study, four biofilm consortia such as C1 (Vitreoscilla sp. ENSG301, Acinetobacter lwoffii ENSG302, Klebsiella pneumoniae ENSG303 and Pseudomonas fluorescens ENSG304), C2 (Escherichia coli ENSD101, Enterobacter asburiae ENSD102 and E. ludwigii ENSH201), C3 (E. asburiae ENSD102, Vitreoscilla sp. ENSG301 and Bacillus thuringiensis ENSW401), and C4 (E. coli ENSD101, E. ludwigii ENSH201 and B. thuringiensis ENSW401) were applied to degrade and detoxify methyl orange (MO), a carcinogenic, sulfonated mono azo dye, used in textile dyeing industry worldwide. The consortia of C1, C2, C3 and C4 showed 97.30, 98.75, 99.51 and 99.29% decolorization, respectively in yeast extract peptone (YEP) broth containing 200 mg L−1 MO within 60 h of incubation in static condition. The optimum pH and temperature for decolorization was 7.0 and 28 °C, respectively. Some divalent metal ions including Mg2+, Ca2+, Zn2+ and Mn2+ could stimulate MO decolorization. UV–Vis spectral analysis showed that the absorption peak at 465 nm originated from the azo (N Created by potrace 1.16, written by Peter Selinger 2001-2019 N) bond was completely disappeared within 60 h of incubation. Fourier transform infrared spectroscopy (FTIR) results also revealed that several major peaks including azo bond peak at 1602.6 cm−1 are completely or partly vanished, deformed or shifted. Activities of azoreductase, NADH-DCIP reductase and laccase were significantly increased in the bacterial cells within 60 h of incubation in comparison to that of control (0 h). The chemical oxygen demand was incredibly reduced by 85.37 to 91.44% by these consortia. Accordingly, plant (wheat seed germination) and microbial (growth of the plant probiotic bacteria such as Pseudomonas cedrina ESR12 and Bacillus cereus ESD3 on biodegraded products) toxicity studies showed that biodegraded products of MO are non-toxic. Thus, all these consortia can be utilized in bioremediation of MO from wastewater for safe disposal into environment. To our knowledge, this is the first report on degradation and detoxification of MO from wastewater by bacterial biofilm consortia.  相似文献   

3.
4.
Textile industry uses azo dyes in its processes, which are complex organic molecules that are not easy to be degraded. Reactive dyes are especially difficult to remove from wastewater because of the characteristics of the molecule: one or more azo bonds, naphthalene‐disulfonate, triazine or chloro‐triazine, and phenyl‐amine groups. The degradation of the azo dye reactive red 272 was studied under anaerobic conditions in a hybrid Upflow Anaerobic Sludge Bed reactor (UASB) with an activated carbon bed. An adapted consortium of microorganisms was used in the kinetic study (batch) and to inoculate the UASB reactor. The experimental design identified the main factors determining the dye reduction efficiency are the initial concentration of dye and dextrose (as electron donor) and the residence time in the reactor. Dye reduction rate was decreased as the concentration increases in the wastewater; as a result, a kinetic model with a change from first to second order is proposed. The kinetic study showed that the process is first abiotic (adsorption) and then biotic (biodegradation).  相似文献   

5.
The azo dye acid red 151 (AR151) was aerobically biodegraded in a sequencing batch biofilter packed with a porous volcanic rock. AR151 was used as the sole source of carbon and energy for acclimated microorganisms. Acclimation was followed using the degradation time and the oxygen uptake rate. A maximal oxygen uptake rate of 0.5 mg O(2)/(lmin) was obtained. Mineralization studies showed that 73% (as carbon) of the initial azo dye was transformed to CO(2) by the consortia. A maximal substrate degradation rate of 247 mg AR151/(l(reactor)d) was obtained. Color removal was up to 99% using an initial concentration of 50 mg AR151/l. Anaerobic tests suggested that in the interior of the porous material, anaerobic biotransformations can occur, contributing from 14% to 16% of the decoloration of the azo dye.  相似文献   

6.
An isolate of Fusarium oxysporum Schlecht, emend. Synd. et Hans. N17B isolated from a grassy area in Lakselv, Norway (Arctic region) produced a toxin in culture when grown on rice in the laboratory. This new toxin, which was given the trivial name of H-1 (indicating hemorrhagic factor), caused toxic effects in rats, including food refusal, weight loss, hemorrhage in the stomach, intestines, heart, and thymus, and finally death. The UV spectrum of H-1 showed 210, 254, and 292 nm as absorption maxima. The infrared spectrum showed carbonyl groups at 1,675 and 1,750 cm-1 and an ether group at 1,215 cm-1. H-1 does not fluoresce under short- or long-wavelength UV light and exists as fluffy, white crystals that turn yellow when subjected to basic reagents such as ammonium hydroxide or tetraethylenepentamine. Elemental and accurate mass determinations in both electron impact and positive chemical ionization indicate an empirical formula of C23H24O8. Its mass spectra (electron impact, chemical ionization, and fast atom bombardment [FAB]) show a molecular ion of 428 and major fragments at m/z+ 386, 368, 355, and 295. H-1 was found to be identical to the antibiotic called wortmannin which is produced by Penicillium wortmannii and Myrothecium roridum. This is the first report of the synthesis of wortmannin by species of the genus Fusarium.  相似文献   

7.
Two fungal strains, Aspergillus clavatus II-9 and Fusarium oxysporum @ 149, proved to be capable of degrading sinigrin and sinalbin. During the degradation of sinigrin by whole cells of the Aspergillus strain, allylcyanide accumulated in the liquid incubation mixture. After a maximum concentration had been reached, the concentration of allylcyanide decreased as a result of its instability in the medium used. Incubation of cell-free extracts with sinigrin resulted in accumulation of glucose and allylisothiocyanate, suggesting that myrosinase is involved. Experiments with intact cells and cell-free extracts indicate the formation of an as yet unknown intermediate. When sinigrin was degraded by the Aspergillus strain in mustard seed meal under solid-state fermentation (SSF) conditions, no accumulation of allylcyanide or allylisothiocyanate was measured. Degradation of sinigrin by F. oxysporum @ 149 did not result in accumulation of intermediates, neither in liquid incubation mixtures nor in mustard seed meal under SSF conditions. Sinigrin was not degraded during incubation with cell-free extracts of F. oxysporum @ 149. Degradation of sinalbin by A. clavatus and F. oxysporum was measured during fermentation of yellow mustard seed meal under SSF conditions. Both fungi are useful for laboratory-scale SSF of mustard seed meal, thus opening new perspectives for a cost effective detoxification process for raw feed materials. Correspondence to: J. P. Smits  相似文献   

8.
A new disease recently was discovered in begonia elatior hybrid (Begonia × hiemalis) nurseries in The Netherlands. Diseased plants showed a combination of basal rot, vein yellowing and wilting and the base of collapsing plants was covered by unusually large masses of Fusarium macroconidia. A species of Fusarium was isolated consistently from the discolored veins of leaves and stems. It differed morphologically from F. begoniae, a known agent of begonia flower, leaf and stem blight. The Fusarium species resembled members of the F. oxysporum species complex in producing short monophialides on the aerial mycelium and abundant chlamydospores. Other phenotypic characters such as polyphialides formed occasionally in at least some strains, relatively long monophialides intermingled with the short monophialides formed on the aerial mycelium, distinct sporodochial conidiomata, and distinct pungent colony odor distinguished it from the F. oxysporum species complex. Phylogenetic analyses of partial sequences of the mitochondrial small subunit of the ribosomal DNA (mtSSU rDNA), nuclear translation elongation factor 1α (EF-1α) and β-tubulin gene exons and introns indicate that the Fusarium species represents a sister group of the F. oxysporum species complex. Begonia × hiemalis cultivars Bazan, Bellona and Netja Dark proved to be highly susceptible to the new species. Inoculated plants developed tracheomycosis within 4 wk, and most died within 8 wk. The new taxon was not pathogenic to Euphorbia pulcherrima, Impatiens walleriana and Saintpaulia ionantha that commonly are grown in nurseries along with B. × hiemalis. Inoculated plants of Cyclamen persicum did not develop the disease but had discolored vessels from which the inoculated fungus was isolated. Given that the newly discovered begonia pathogen is distinct in pathogenicity, morphology and phylogeny from other fusaria, it is described here as a new species, Fusarium foetens.  相似文献   

9.
Summary Freeze-etched hyphae of F. oxysporum exhibited a single layered cell wall; a plasmalemma, in which invaginations were frequently associated with paramural vesicles; cytoplasma bearing lipid droplets, vacuoles, intravacuolar vesicles and nuclei with typical nuclear pores. Some hyphae bore crystalline inclusions characterized by a pronounced hexagonal, external ornamentation and it is suggested that the presence of these crystals and intravacuolar vesicles are indicative of aging hyphae.  相似文献   

10.
The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).  相似文献   

11.
12.
Fusarium oxysporum and its biocontrol   总被引:9,自引:0,他引:9  
  相似文献   

13.
Gupta CP  Sharma A  Dubey RC  Maheshwari DK 《Cytobios》1999,99(392):183-189
A plant growth promotory bacterial strain, isolated from the potato rhizosphere, was characterized as Pseudomonas aeruginosa (GRC1). The isolate produced an hydroxamate type of siderophore after 48 h of incubation on tryptic soy medium under iron deficient conditions. The in vitro antifungal activity of P. aeruginosa was tested against two soil-borne plant pathogens, Macrophomina phaseolina and Fusarium oxysporum. The antagonistic behaviour of the isolate was tested by dual culture technique. The growth inhibition of M. phaseolina and F. oxysporum was 74.1% and 70.5%, respectively, after 5 days of incubation. The production of hydrocyanic acid and indole acetic acid was also recorded under normal growth conditions.  相似文献   

14.
In the present review we wanted to highlight the characteristic features of cytochtome P450 NADH-NO reductase (P450nor) from Fusarium oxysporum which belongs to the heme-thiolate protein family. This enzyme catalyzes the reduction of two NO molecules to N2O. The discovery, isolation, identification and crystallography are described in detail. Special emphasis was focused on the mechanism of NO reduction and possible electronic configurations of the 444 nm intermediate were discussed. Among heme-thiolate proteins nitric oxide reductase (P450nor) is unique since it catalyzes the conversion to dinitrogen oxide as a reductive process. However, it joins the typical physical characteristics of other P450 proteins including the ferric NO complex which can be considered as the enzyme-substrate complex of the enzyme. At a closer look some of its properties like a tilted structure and a shorter Fe-N distance indicate properties for a facilitated hydride transfer from NADH. The resulting intermediate forms the product in a subsequent reaction with the NO radical. For this rate-limiting step at physiological NO levels electron transfer is postulated as a common feature with other heme-thiolate mechanisms. P450nor seems to have an important role in protecting the fungus from NO inhibition of mitochondria especially when dioxygen becomes limiting.  相似文献   

15.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT.  相似文献   

16.
Abstract

The decolorization of toxic azo dye Ponceau 4R by three strains of bacteria Bacillus sp. strain AK1, Lysinibacillus sp. strain AK2 and Kerstersia sp. strain VKY1 individually and in consortia was studied. At optimal conditions, up to 95%, 93% and 87% of the dye was decolorized by the strains AK1, AK2 and VKY1, respectively, in 24?h at 200?mg/L of the dye. Decolorization of the dye was optimized for different parameters such as the concentration of dye, pH, temperature and NaCl concentration. These strains were able to decolorize Ponceau 4R up to an initial concentration of 800?mg/L in the pH range of 5–10, temperature 25–55?°C and NaCl concentration up to 30?g/L. The dye decolorization efficiency of these strains was further enhanced by using different consortia of AK1, AK2 and VKY1 in various combinations. The complete decolorization of the dye by a consortium was achieved within 18?h at 200?mg/L. The cell-free extract of these strains grown on this dye exhibited a remarkable activity of azoreductase which is involved in the breakage of the azo bond. The steady-state kinetics of azoreductase, validated the ping pong Bi-Bi mechanism of enzyme action. UV–Vis spectra, HPLC, FTIR and LC-MS analysis of the dye decolorized samples showed the formation of 4-aminonaphthalene-1-sulphonic acid and 5-amino-6-hydroxynaphthalene-2, 4-disulphonic acid as the products of azo bond breakage. The phytotoxicity test of decolorized sample revealed a considerable reduction in the toxicity in comparison with the parent dye.  相似文献   

17.
An isolate of Fusarium oxysporum Schlecht, emend. Synd. et Hans. N17B isolated from a grassy area in Lakselv, Norway (Arctic region) produced a toxin in culture when grown on rice in the laboratory. This new toxin, which was given the trivial name of H-1 (indicating hemorrhagic factor), caused toxic effects in rats, including food refusal, weight loss, hemorrhage in the stomach, intestines, heart, and thymus, and finally death. The UV spectrum of H-1 showed 210, 254, and 292 nm as absorption maxima. The infrared spectrum showed carbonyl groups at 1,675 and 1,750 cm-1 and an ether group at 1,215 cm-1. H-1 does not fluoresce under short- or long-wavelength UV light and exists as fluffy, white crystals that turn yellow when subjected to basic reagents such as ammonium hydroxide or tetraethylenepentamine. Elemental and accurate mass determinations in both electron impact and positive chemical ionization indicate an empirical formula of C23H24O8. Its mass spectra (electron impact, chemical ionization, and fast atom bombardment [FAB]) show a molecular ion of 428 and major fragments at m/z+ 386, 368, 355, and 295. H-1 was found to be identical to the antibiotic called wortmannin which is produced by Penicillium wortmannii and Myrothecium roridum. This is the first report of the synthesis of wortmannin by species of the genus Fusarium.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号