首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific genes that result in abnormal elongation of polyglutamine (polyQ) tracts in the corresponding gene products. When above a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed that interruption of the CAG tract by silent (CAA) or missense (CAT) mutations may strongly modulate the effect of the expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that histidine interrupted pathogenic alleles occur with relatively high frequency (11%) and that the age at onset inversely correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype with regards to age at disease onset, prognosis and transmission.  相似文献   

2.
It has recently been suggested that short expansions of CAG repeat in the gene ATXN-2 causing SCA2 (spinocerebellar ataxia type 2) are associated with an increased risk of amyotrophic lateral sclerosis (ALS) in the populations of the USA and northern Europe. In this study, we investigated the role of ATXN-2 in Italian patients clinically diagnosed with ALS and characterized the molecular structure of ATXN-2 expansions. We assessed the size of the CAG repeat in ATXN-2 exon 1 in 232 Italian ALS patients and 395 matched controls. ATXN-2 expanded alleles containing >30 repeats have been observed in seven sporadic ALS patients (3.0%), while being absent in the controls (p = 0.00089). Four out of the seven patients had an ATXN-2 allele in the intermediate-fully pathological range: one with 32 repeats, 2 with 33 repeats and 1 with 37 repeats, accounting for 1.7% of the ALS cohort. Sequencing of expanded (>32) alleles showed that they were all interrupted with at least one CAA triplet. ATXN-2 alleles with the same length and structure have been reported in SCA2 patients with parkinsonism or in familial and sporadic Parkinson. Conversely, the phenotype of the present patients was typically ALS with no signs or symptoms of ataxia or parkinsonism. In conclusion, the findings of ATXN-2 expansions in pure ALS cases suggest that ALS may be a third phenotype (alongside ataxia/parkinsonism and pure Parkinson) associated with ATXN-2 interrupted alleles.  相似文献   

3.
Pathogenic CAG repeat expansion in the ataxin-2 gene (ATXN2) is the genetic cause of spinocerebellar ataxia type 2 (SCA2). Recently, it has been associated with Parkinsonism and increased genetic risk for amyotrophic lateral sclerosis (ALS). Here we report the association of de novo mutations in ATXN2 with autosomal dominant ALS. These findings support our previous conjectures based on population studies on the role of large normal ATXN2 alleles as the source for new mutations being involved in neurodegenerative pathologies associated with CAG expansions. The de novo mutations expanded from ALS/SCA2 non-risk alleles as proven by meta-analysis method. The ALS risk was associated with SCA2 alleles as well as with intermediate CAG lengths in the ATXN2. Higher risk for ALS was associated with pathogenic CAG repeat as revealed by meta-analysis.  相似文献   

4.
Expansions of the polyglutamine (polyQ) domain (≥34) in Ataxin-2 (ATXN2) are the primary cause of spinocerebellar ataxia type 2 (SCA2). Recent studies reported that intermediate-length (27–33) expansions increase the risk of Amyotrophic Lateral Sclerosis (ALS) in 1–4% of cases in diverse populations. This study investigates the Turkish population with respect to ALS risk, genotyping 158 sporadic, 78 familial patients and 420 neurologically healthy controls. We re-assessed the effect of ATXN2 expansions and extended the analysis for the first time to cover the ATXN2 locus with 18 Single Nucleotide Polymorphisms (SNPs) and their haplotypes. In accordance with other studies, our results confirmed that 31–32 polyQ repeats in the ATXN2 gene are associated with risk of developing ALS in 1.7% of the Turkish ALS cohort (p = 0.0172). Additionally, a significant association of a 136 kb haplotype block across the ATXN2 and SH2B3 genes was found in 19.4% of a subset of our ALS cohort and in 10.1% of the controls (p = 0.0057, OR: 2.23). ATXN2 and SH2B3 encode proteins that both interact with growth receptor tyrosine kinases. Our novel observations suggest that genotyping of SNPs at this locus may be useful for the study of ALS risk in a high percentage of individuals and that ATXN2 and SH2B3 variants may interact in modulating the disease pathway.  相似文献   

5.
6.
7.
8.
9.
10.
There is a wide variation in prevalence of spinocerebellar ataxia type 1 (SCA1) in different populations. In the present study, we observed SCA1 in ∼22% (37/167 families) of the autosomal dominant cerebellar ataxias (ADCAs) in the Indian population. We investigated the role of various genetic factors like repeat length, interruption pattern and chromosomal background in predisposing the repeats to instability in these families. We analyzed 12 markers (9 SNPs and 3 microsatellite markers) and found 3 of them, spanning a region of ∼65 kbp to be linked with the disease locus in the Indian population. The haplotype C-4-C defined by rs1476464 (SNP9)-D6S288-rs2075974 (SNP1), which was extremely rare in nonaffected chromosomes (∼3%), was observed to be significantly (P<0.0000) associated with the expanded chromosomes in ∼44% of SCA1 families. This haplotype was found in all nonhuman primates. SNP1 (C/T), which showed a skewed allelic distribution between large (LN > 30 repeats) and small normal (SN ≤ 30 repeats) alleles (P<0.0000) had similar allelic distribution (P=0.3477) in LN and expanded alleles. Our study suggested that LN and expanded chromosomes linked with the ancestral C allele of SNP1 might have originated simultaneously during evolution by the lengthening of repeats. The LN alleles might have accumulated repeat stabilizing non-CAG interruptions during this process. Similar proportions of T allele in SN with single interruptions, LN and expanded chromosomes lend credence to the origin of expanded alleles from singly-interrupted chromosomes. Our analyses using markers linked (anchoring) to SCA1 suggest that prevalence of SCA1 is correlated to both repeat length and number of interruptions in the Indian population. The spectrum of these alleles also points toward the antiquity of SCA1 mutation in the Indian population.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a rare degenerative condition of the motor neurons. Over 10% of ALS cases are linked to monogenic mutations, with the remainder thought to be due to other risk factors, including environmental factors, genetic polymorphisms, and possibly gene-environmental interactions. We examined the association between ALS and an intermediate CAG repeat expansion in the ATXN2 gene using a meta-analytic approach. Observational studies were searched with relevant disease and gene terms from MEDLINE, EMBASE, and PsycINFO from January 2010 through to January 2014. All identified articles were screened using disease terms, gene terms, population information, and CAG repeat information according to PRISMA guidelines. The final list of 17 articles was further evaluated based on the study location, time period, and authors to exclude multiple usage of the same study populations: 13 relevant articles were retained for this study. The range 30–33 CAG repeats in the ATXN2 gene was most strongly associated with ALS. The meta-analysis revealed that the presence of an intermediate CAG repeat (30-33) in the ATXN2 gene was associated with an increased risk of ALS [odds ratio (OR) = 4.44, 95%CI: 2.91–6.76)] in Caucasian ALS patients. There was no significant difference in the association of this CAG intermediate repeat expansion in the ATXN2 gene between familial ALS cases (OR = 3.59, 1.58–8.17) and sporadic ALS cases (OR = 3.16, 1.88–5.32). These results indicate that the presence of intermediate CAG repeat expansion in the ATXN2 gene is a specific genetic risk factor for ALS, unlike monogenic mutations with an autosomal dominant transmission mode, which cause a more severe phenotype of ALS, with a higher prevalence in familial ALS.  相似文献   

12.
13.
14.
A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in approximately 70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r2 = .19). The size of the CAG repeat influenced larger intergenerational expansions (> 7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (> 7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P < 10(-7)), while offspring of affected mothers are more likely to show no change (P = .01) or contractions in CAG size (P = .002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability.  相似文献   

15.
Recombination induced by double-strand breaks (DSBs) in yeast leads to a higher proportion of expansions to contractions than does replication-associated tract length changes. Expansions are apparently dependent on the property of the repeat array to form hairpins, since DSB repair of a CAA(87) repeat induces only contractions of the repeat sequence. DSB-repair efficiency is reduced by 40% when DNA synthesis must traverse a CAG(98) array, as compared with a CAA(87) array. These data indicate that repair- associated DNA synthesis is inhibited by secondary structures formed by CAG(98) and that these structures promote repeat expansions during DSB repair. Overexpression of Mre11p or Rad50p suppresses the inhibition of DSB repair by CAG(98) and significantly increases the average size of expansions found at the recipient locus. Both effects are dependent on the integrity of the Mre11p-Rad50p-Xrs2p complex. The Mre11 complex thus appears to be directly involved in removing CAG or CTG hairpins that arise frequently during DNA synthesis accompanying gene conversion of these trinucleotide repeats.  相似文献   

16.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

17.
18.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   

19.
20.
FMR1 in global populations.   总被引:3,自引:1,他引:2       下载免费PDF全文
Fragile X syndrome, a frequent form of inherited mental retardation, results from the unstable expansion of a cryptic CGG repeat within the 5' UTR region of the FMR1 gene. The CGG repeat is normally polymorphic in length, and the content is frequently interrupted by AGG triplets. These interruptions are believed to stabilize the repeat, and their absence, leading to long tracts of perfect CGG repeats, may give rise to predisposed alleles. In order to examine the stability of normal FMR1 alleles, the repeat length of 345 chromosomes from nine global populations was examined with the content also determined from 114 chromosomes as assessed by automated DNA sequencing. The FMR1 alleles, defined by the CGG repeat, as well as by the haplotypes of nearby polymorphic loci, were very heterogeneous, although the level of variation correlated with the age and/or genetic history of a particular population. Native American alleles, interrupted by three AGG repeats, exhibited marked stability over 7,000 years. However, in older African populations, parsimony analysis predicts the occasional loss of an AGG, leading to more perfect CGG repeats. These data therefore support the suggestion that AGG interruptions enhance the stability of the FMR1 repeat and indicate that the rare loss of these interruptions leads to alleles with longer perfect CGG-repeat tracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号