首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has traditionally been assumed that cochlear implant users de facto perform atypically in audiovisual tasks. However, a recent study that combined an auditory task with visual distractors suggests that only those cochlear implant users that are not proficient at recognizing speech sounds might show abnormal audiovisual interactions. The present study aims at reinforcing this notion by investigating the audiovisual segregation abilities of cochlear implant users in a visual task with auditory distractors. Speechreading was assessed in two groups of cochlear implant users (proficient and non-proficient at sound recognition), as well as in normal controls. A visual speech recognition task (i.e. speechreading) was administered either in silence or in combination with three types of auditory distractors: i) noise ii) reverse speech sound and iii) non-altered speech sound. Cochlear implant users proficient at speech recognition performed like normal controls in all conditions, whereas non-proficient users showed significantly different audiovisual segregation patterns in both speech conditions. These results confirm that normal-like audiovisual segregation is possible in highly skilled cochlear implant users and, consequently, that proficient and non-proficient CI users cannot be lumped into a single group. This important feature must be taken into account in further studies of audiovisual interactions in cochlear implant users.  相似文献   

2.
Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.  相似文献   

3.
Given that both auditory and visual systems have anatomically separate object identification ("what") and spatial ("where") pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG) oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what") vs. spatial ("where") aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz) power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex), as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI) analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what") vs. sound location ("where"). The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.  相似文献   

4.
Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.  相似文献   

5.
Seitz AR  Kim R  Shams L 《Current biology : CB》2006,16(14):1422-1427
Numerous studies show that practice can result in performance improvements on low-level visual perceptual tasks [1-5]. However, such learning is characteristically difficult and slow, requiring many days of training [6-8]. Here, we show that a multisensory audiovisual training procedure facilitates visual learning and results in significantly faster learning than unisensory visual training. We trained one group of subjects with an audiovisual motion-detection task and a second group with a visual motion-detection task, and compared performance on trials containing only visual signals across ten days of training. Whereas observers in both groups showed improvements of visual sensitivity with training, subjects trained with multisensory stimuli showed significantly more learning both within and across training sessions. These benefits of multisensory training are particularly surprising given that the learning of visual motion stimuli is generally thought to be mediated by low-level visual brain areas [6, 9, 10]. Although crossmodal interactions are ubiquitous in human perceptual processing [11-13], the contribution of crossmodal information to perceptual learning has not been studied previously. Our results show that multisensory interactions can be exploited to yield more efficient learning of sensory information and suggest that multisensory training programs would be most effective for the acquisition of new skills.  相似文献   

6.
Techniques employed in rehabilitation of visual field disorders such as hemianopia are usually based on either visual or audio-visual stimulation and patients have to perform a training task. Here we present results from a completely different, novel approach that was based on passive unimodal auditory stimulation. Ten patients with either left or right-sided pure hemianopia (without neglect) received one hour of unilateral passive auditory stimulation on either their anopic or their intact side by application of repetitive trains of sound pulses emitted simultaneously via two loudspeakers. Immediately before and after passive auditory stimulation as well as after a period of recovery, patients completed a simple visual task requiring detection of light flashes presented along the horizontal plane in total darkness. The results showed that one-time passive auditory stimulation on the side of the blind, but not of the intact, hemifield of patients with hemianopia induced an improvement in visual detections by almost 100% within 30 min after passive auditory stimulation. This enhancement in performance was reversible and was reduced to baseline 1.5 h later. A non-significant trend of a shift of the visual field border toward the blind hemifield was obtained after passive auditory stimulation. These results are compatible with the view that passive auditory stimulation elicited some activation of the residual visual pathways, which are known to be multisensory and may also be sensitive to unimodal auditory stimuli as were used here. TRIAL REGISTRATION: DRKS00003577.  相似文献   

7.
Facilitation of general cognitive capacities such as executive functions through training has stirred considerable research interest during the last decade. Recently we demonstrated that training of auditory attention with forced attention dichotic listening not only facilitated that performance but also generalized to an untrained attentional task. In the present study, 13 participants underwent a 4-week dichotic listening training programme with instructions to report syllables presented to the left ear (FL training group). Another group (n = 13) was trained using the non-forced instruction, asked to report whichever syllable they heard the best (NF training group). The study aimed to replicate our previous behavioural results, and to explore the neurophysiological correlates of training through event-related brain potentials (ERPs). We partially replicated our previous behavioural training effects, as the FL training group tended to show more allocation of auditory spatial attention to the left ear in a standard dichotic listening task. ERP measures showed diminished N1 and enhanced P2 responses to dichotic stimuli after training in both groups, interpreted as improvement in early perceptual processing of the stimuli. Additionally, enhanced anterior N2 amplitudes were found after training, with relatively larger changes in the FL training group in the forced-left condition, suggesting improved top-down control on the trained task. These results show that top-down cognitive training can modulate the left-right allocation of auditory spatial attention, accompanied by a change in an evoked brain potential related to cognitive control.  相似文献   

8.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

9.
The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.  相似文献   

10.
For audiovisual sensory events, sound arrives with a delay relative to light that increases with event distance. It is unknown, however, whether humans can use these ubiquitous sound delays as an information source for distance computation. Here, we tested the hypothesis that audiovisual delays can both bias and improve human perceptual distance discrimination, such that visual stimuli paired with auditory delays are perceived as more distant and are thereby an ordinal distance cue. In two experiments, participants judged the relative distance of two repetitively displayed three-dimensional dot clusters, both presented with sounds of varying delays. In the first experiment, dot clusters presented with a sound delay were judged to be more distant than dot clusters paired with equivalent sound leads. In the second experiment, we confirmed that the presence of a sound delay was sufficient to cause stimuli to appear as more distant. Additionally, we found that ecologically congruent pairing of more distant events with a sound delay resulted in an increase in the precision of distance judgments. A control experiment determined that the sound delay duration influencing these distance judgments was not detectable, thereby eliminating decision-level influence. In sum, we present evidence that audiovisual delays can be an ordinal cue to visual distance.  相似文献   

11.
Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.  相似文献   

12.
The language difficulties often seen in individuals with autism might stem from an inability to integrate audiovisual information, a skill important for language development. We investigated whether 9-month-old siblings of older children with autism, who are at an increased risk of developing autism, are able to integrate audiovisual speech cues. We used an eye-tracker to record where infants looked when shown a screen displaying two faces of the same model, where one face is articulating/ba/and the other/ga/, with one face congruent with the syllable sound being presented simultaneously, the other face incongruent. This method was successful in showing that infants at low risk can integrate audiovisual speech: they looked for the same amount of time at the mouths in both the fusible visual/ga/- audio/ba/and the congruent visual/ba/- audio/ba/displays, indicating that the auditory and visual streams fuse into a McGurk-type of syllabic percept in the incongruent condition. It also showed that low-risk infants could perceive a mismatch between auditory and visual cues: they looked longer at the mouth in the mismatched, non-fusible visual/ba/- audio/ga/display compared with the congruent visual/ga/- audio/ga/display, demonstrating that they perceive an uncommon, and therefore interesting, speech-like percept when looking at the incongruent mouth (repeated ANOVA: displays x fusion/mismatch conditions interaction: F(1,16) = 17.153, p = 0.001). The looking behaviour of high-risk infants did not differ according to the type of display, suggesting difficulties in matching auditory and visual information (repeated ANOVA, displays x conditions interaction: F(1,25) = 0.09, p = 0.767), in contrast to low-risk infants (repeated ANOVA: displays x conditions x low/high-risk groups interaction: F(1,41) = 4.466, p = 0.041). In some cases this reduced ability might lead to the poor communication skills characteristic of autism.  相似文献   

13.
In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music), visual (musician's movements only), and auditory emotional (music only) displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound) than for emotionally matching music performances (combining the musician's movements with matching emotional sound) as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.  相似文献   

14.

Background

An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.

Methodology/Principal Findings

Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.

Conclusions/Significance

The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.  相似文献   

15.
Kim RS  Seitz AR  Shams L 《PloS one》2008,3(1):e1532

Background

Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning.

Methodology/Principle Findings

Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli.

Conclusions/Significance

This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level.  相似文献   

16.
Pitch changes that occur in speech and melodies can be described in terms of contour patterns of rises and falls in pitch and the actual pitches at each point in time. This study investigates whether training can improve the perception of these different features. One group of ten adults trained on a pitch-contour discrimination task, a second group trained on an actual-pitch discrimination task, and a third group trained on a contour comparison task between pitch sequences and their visual analogs. A fourth group did not undergo training. It was found that training on pitch sequence comparison tasks gave rise to improvements in pitch-contour perception. This occurred irrespective of whether the training task required the discrimination of contour patterns or the actual pitch details. In contrast, none of the training tasks were found to improve the perception of the actual pitches in a sequence. The results support psychological models of pitch processing where contour processing is an initial step before actual pitch details are analyzed. Further studies are required to determine whether pitch-contour training is effective in improving speech and melody perception.  相似文献   

17.
In spite of the large quantity of psychophysiological investigations of binaural hearing, a systematic study of its concrete mechanisms has only been begun comparatively recently (cf. review [1]). In particular, changes in neuron response under conditions of lateral differentiation brought about by varying the intensity of one of the monaural components of binaurally presented stimuli have been studied in detail only at the site of the superior olivary body (3, 4, 6) — the first section of the auditory system — where afferent fibers from the right and left cochlea converge (7, 9). Published data provide evidence that variations in the intensity of one of the monaural components of binaurally presented signals has an appreciable effect on the firing rate of single neurons of the inferior colli cuius (5, 8), which is situated directly behind the superior olivary body of the auditory system. in the present report, the types of response of neurons in the inferior colliculus to variations in the intensity of one of the monaural components of binaurally presented stimuli are systematically investigated.  相似文献   

18.
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).  相似文献   

19.
The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual-auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation.  相似文献   

20.
Animals such as bats and dolphins exhibit impressive echolocation abilities in terms of ranging, resolution and imaging and therefore represent a valuable learning model for the study of spatial hearing and sound source localization leading to a better understanding of the hearing mechanism and further improvement of the existing localization strategies. This study aims to examine and understand the directional characteristics of a sonar receiver modeled upon the bat auditory system via measurements of the head-related transfer function (HRTF) in the horizontal plane. Four different models of the bat head were considered here and used to evaluate acoustic spectral characteristics of the sound received by the bat's ears – a sphere model, a sphere model with a pinna attached (two pinnae of different size were used in this study) and a bat-head cast. The performed HRTF measurements of the bat-head models were further analyzed and compared to identify monaural spectral localization cues in the horizontal plane defined by the bat's head and pinna shape and size. Our study suggests that the acoustical characteristics of a bio-inspired sonar head measured and specified in advance can potentially improve the performance of a receiver. Moreover, the generated auditory models may hold clues for the design of receiver characteristics in ultrasound imaging and navigation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号