首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热胁迫对豌豆下胚轴生理的一些影响   总被引:1,自引:0,他引:1  
通过测定热驯和热胁迫下3个豌豆品种幼苗下胚轴生长、细胞膜损伤、抗坏血酸(AsA)和丙二醛(佃A)含量的变化及热激蛋白70(HSP70)表达,探讨热胁迫对豌豆生理的影响。结果表明,在48℃高温胁迫下豌豆种子萌发率下降,幼苗下胚轴生长受抑制,细胞膜受损,AsA含量下降,MDA含量升高;经37℃热驯再48℃热激处理的下胚轴长度和ASA明显高于直接热胁迫的,细胞膜受损程度和MDA含量则低于后者。HSP70测定表明,除台湾品种外,37℃热驯1h不足以诱导HSP70表达;而37℃热驯后常温恢复再48℃热激和直接48℃热激均能诱导HSP70表达,其中蒙自品种经热驯后再热激的HSP70表达量高于直接热激的。  相似文献   

2.
 研究了高温锻炼对低温胁迫下和低温锻炼对高温胁迫下葡萄(Vitis vinifera)叶片中丙二醛(MDA)、谷胱甘肽(GSH)和抗坏血酸(AsA)含量变化以及细胞中Ca2+分布的影响。结果表明: 高(低)温胁迫使正常生长的叶片丙二醛含量升高, GSH和AsA含量下降,低(高)温锻炼预处理能减少MDA含量,提高GSH和AsA含量,抑制了由于温度胁迫引起MDA含量升高和GSH和AsA下降趋势。常温下葡萄叶肉细胞的Ca2+主要分布于液泡、细胞间隙中;高温胁迫和低温胁迫后,细胞质中聚集大量Ca2+沉淀颗粒,液泡中和细胞间隙Ca2+沉淀颗粒减少,叶绿体超微结构被破坏,Ca2+稳态平衡遭到破坏。高温锻炼后细胞质出现大量的Ca2+沉淀颗粒,主要来源于细胞间隙,低温锻炼后细胞质也出现大量的Ca2+沉淀颗粒,主要来源于液泡,两者的叶绿体超微结构都完整;高温锻炼的叶片经过低温胁迫和低温锻炼的叶片经过高温胁迫后,细胞间隙和液泡内Ca2+沉淀颗粒增加,细胞质中Ca2+沉淀颗粒很少,叶绿体较完整,Ca2+稳态平衡得以维持。推测高低温锻炼能够通过Ca2+启动抗逆基因表达和维持细胞中Ca2+稳态平衡来交叉适应低高温的胁迫。  相似文献   

3.
研究叶面喷施外源MeJA对高温胁迫下半夏的超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)活性的影响;对脯氨酸(Pro)、丙二醛(MDA)、可溶性糖含量及有效成分含量的影响;对小分子热激蛋白(sHSP)等胁迫相关基因表达的影响。将生长状况一致的半夏植株在40℃高温下进行胁迫处理,实验组喷施50μmol·L^-1的外源MeJA溶液,空白组喷施等量的水,分别在处理2、6、12、24、48 h时进行取样,对样品进行指标测定。结果发现,在40℃高温下,喷施一定浓度的外源MeJA可以提高半夏叶片的SOD、POD、APX活性,降低MDA质量分数,增加脯氨酸及可溶性糖含量;对半夏有机酸含量无明显影响。2个细胞质型小分子热激蛋白和GRRBP蛋白,在MeJA处理后表达量显著增加。由此得出结论:喷施外源MeJA可以增强半夏中部分抗氧化酶的活性,保护半夏的细胞膜,增强细胞的渗透调节能力,且外源MeJA可能增加半夏高温胁迫响应基因的表达。  相似文献   

4.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

5.
李明珠  刘向东 《昆虫学报》2022,65(10):1314-1323
摘要: 【目的】在全球不断变暖背景下,昆虫受到热胁迫的频率不断增加。短期内反复受到热胁迫会使昆虫产生热适应性,但是昆虫热驯化所产生的耐热能力的传代效应还不完全清楚。稻纵卷叶螟Cnaphalocrocis medinalis是水稻上的重要害虫,对其幼虫在特定温度下进行几代热锻炼可提高其对高温的适应能力。本研究旨在摸清稻纵卷叶螟热适应的传代能力,为在全球变暖形势下以温度因子预测其种群发展趋势提供指导。【方法】将实验室内分别经39℃和41℃连续锻炼30代建立的稻纵卷叶螟热锻炼品系HA39和HA41以及非锻炼品系HA27的1-5龄期幼虫在不同温度(36℃和41℃)下进行不同时长(1~144 h)的暴露处理,调查幼虫的存活率,确定热锻炼品系幼虫的耐热能力;采用两品系间杂交实验测定HA39和HA27各交配组合的繁殖力及后代3龄幼虫的耐热能力;对HA39停止高温锻炼,并测定停止锻炼2代后3龄幼虫的耐热能力。【结果】稻纵卷叶螟3龄幼虫经历多代次短期热锻炼不仅可提高该龄幼虫的高温适应力,而且可提高其他龄期幼虫对特定高温的耐受能力,表现为HA39和HA41在36或41℃下处理特定时长的存活率显著高于HA27。锻炼高温的不同,幼虫获得的热耐受能力也有差异。39℃下锻炼可提高4龄幼虫在36℃下暴露2和4 d以及5龄幼虫在41℃下暴露5和6 h时的存活率,但41℃下锻炼则不可。HA39和HA27的自交及杂交后代的繁殖力之间均无显著差异,杂交后代3龄幼虫在41℃下处理5和6 h时的存活率与HA39自交后代的相当,并且显著高于HA27自交后代的,幼虫通过热锻炼获得的耐热能力可从亲本遗传给后代。停止热锻炼2代后,在39℃下处理4 h时HA39 3龄幼虫的存活率显著高于HA27的,但39℃下其余处理时间以及36和41℃下处理1~7 h HA39 3龄幼虫的存活率均与HA27的无显著差异,表明幼虫热锻炼产生的耐热能力在停止锻炼后2代仍可部分保持。【结论】稻纵卷叶螟幼虫的热适应能力具有继代效应。经过长期的气候变暖适应后,稻纵卷叶螟种群的热适应能力很可能在不断增强,从而夏季高温对其种群的抑制作用减弱,其种群暴发频率增加。  相似文献   

6.
Heat acclimation of rats has been shown to enhance endurance of rat hearts to ischemic insult and acute heat stress. Common protective features have been shown to be operative during both these stress-inducing conditions. To explore the role of membrane lipid composition in the adaptive response, we analyzed two major parameters that impact membrane dynamics and order, the nonesterified cholesterol levels and the acyl chain composition of phospholipids, in rat heart and salivary glands, both major thermoregulatory organs, in short- and long-term heat-acclimated rats. Before exposure to heat, control salivary gland tissue has a higher cholesterol-to-phospholipid mole ratio (0.32 +/- 0.02) than heart (0.14 +/- 0.01), and the acyl chains of its phospholipids are 50% more saturated. The remodeling strategies of the tissues after exposure to heat differed. Heart cholesterol levels increased after short-term heat acclimation (approximately 50%), whereas salivary gland cholesterol levels decreased in acute heat stress and long-term heat acclimation (approximately 32%). Remodeling of phospholipid acyl chains, particularly an increase in docosahexaenoic acid, was a protective strategy in both tissues (57% in heart and >100% in salivary glands). Modifying membrane lipid composition by treating rats with liposomes composed of egg phosphatidylcholine (PC) before exposure to heat resulted in a 38% increase in endurance to thermal stress. The density and affinity of muscarinic receptors of submaxillary salivary glands, involved in the acclimation response, were measured in control and PC liposome-treated rats, and then both groups were subjected to short-term heat acclimation. After PC treatment the well-established compensatory upregulation of the muscarinic receptors and concomitant decrease in their affinity was blunted. The substantial increase in the thermal endurance of heat-challenged intact rats after treatment with PC liposomes (600 vs. 200 min) suggests that membrane lipid composition plays a role in the ability of these tissues to respond to heat stress.  相似文献   

7.
Duck pear (Pyrus bretschneideri Rehder) tends to develop browning core after 55 to 60 days storage at low temperature (0℃). Following physiological changes of the duck pear during storage at different temperature were investigated: (1) As compared with 20℃, ethylene release is obviously decreased and its peak is retarded for 15 days at 0℃. Levels of internal ethylene are variant at different individuals harvested at same time. Concentrations of internal ethylene are in accord with ethylene release. The higher internal ethylene is, the easier the pear core becomes brown. (2) At 0℃, activity of polyphenol oxidase in the core increases with ethylene release enhancement. After ethylene peak passes, its activity is lower than before. (3) The electric conductivity of cores is higher at 0℃ than at 20℃. During post climacteric period, the electric conductivity increases irreversibly, then browning core occurs. From above results, it is concluded that interactions between two factors induce the browrang core of the duck pears at low temperature. One is chilling injury caused by low temperature, another is ethylene function. They stimulate the activity of polyphenol oxidase and enhance the membrane permeability.  相似文献   

8.
The seedlings of hybrid rice were exposed to low(l℃) and high (40℃) temperatures and the permeability of plasma membrane, the activities of SOD, catalase, and peroxidase were assayed and the contents of malondialdehyde (MDA), ascorbic acid and glutathione were estimated. The ability of the seedlings to scavenge activated oxygen progresively decreased with the time of exposure to low temperature, concurrently MDA gradually accumulated and the permeability of the plasma membrane decreased. The amounts of MDA increased were different in the two hybrid combinations and were not in accordance with the ability of cold resistance. Comparing the more resistant variety “Wei-you 287” with the less resistant variety “Wei-you 49”, it was found that the leakage of electrolytes, the activities of SOD, peroxidase and catalase and the content of glutathione were all higher in the more resistant variety, but the accumulation of MDA was more in the less resistant variety. Higher temperature was less harmful than lower one to the seedlings of hybrid rice. Both enzymic and non-enzymic systems scavenging activated oxygen were similarly important in protecting the seedlings from damage by such oxygen.  相似文献   

9.
Microsome, plasma membrane vesicles and tonoplast membrane vesicles were isolated from the hypocotyles of Phaseolus vulgaris L. 85CT-49762, with very high heat tolerance potential. Comparing the H+-pump heat stability in vitro of the vesicles from the heat acclimated cells and the cells in which protein synthesis was inhibited by actidion during heat acclimation with that of normal cells, the authors found that heat acclimation could increase the heat stability of membrane vesicles, and that the heat shock proteins synthesized during heat acclimation were related to the effect. The authors further analysed the role of membrane peripheral proteins on H+-pump thermotolerance of membrane vesicles, and proved that heat shock protein HSP 70 and low molecular weight heat shock protein (LMW HSP) were able to protect H+-pump from heat destruction.  相似文献   

10.
Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted >50 mole% of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole% of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole%, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole% and 4 to 1 mole%, respectively. Sterol analyses of these lipid classes demonstrated that free β-sitosterol increased from 21 to 32 mole% (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing β-sitosterol. Glucocerebrosides decreased from 16 to 7 mole% of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h), were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole% of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species (18:2/18:2, 18:2/18:3, 18:3/18:3) of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.  相似文献   

11.
Membrane function in mammalian hibernation   总被引:1,自引:0,他引:1  
For homeotherms the maintenance of a high, uniform body temperature requires a constant energy supply and food intake. For many small mammals, the loss of heat in winter exceeds energy supply, particularly when food is scarce. To survive, some animals have developed a capacity for adaptive hypothermia in which they lower their body temperature to a new regulatory set-point, usually a few degrees above the ambient. This process, generally known as hibernation, reduces the temperature differential, metabolic activity, as well as the energy demand, and thus facilitates survival during winter. Successful hibernation in mammals requires that the enzymatic processes are regulated in such a manner that metabolic balance is maintained at both the high body temperature of the summer-active animal (37 degrees C) and the low body temperature of the winter-torpid animal (approx. 5 degrees C). This means that the cellular membranes have thermal properties capable of maintaining a balanced metabolism at these extreme physiological temperatures. The available evidence indicates that, for some tissues, preparation for hibernation involves an alteration in the lipid composition and thermal properties of cellular membranes. Marked differences in the thermal response of cellular membranes have been observed on a seasonal basis and, in some membranes, differences in lipid composition have been associated with the torpid state. However, to date, no consistent changes in lipid composition which would account for, or explain, the changes in membrane thermal response, have been detected. An important point to emphasize is that the process of 'homeoviscous adaptation', which occurs in procaryotes and some poikilotherms during acclimation to low temperatures, is not a characteristic feature of most membranes of mammalian hibernators.  相似文献   

12.
Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60 h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance (1h at subzero temperatures) was also slightly better in the cold acclimated flies. LT50 shifted down by ca 1.5 degrees C in 15 degrees C-acclimated flies in comparison to those acclimated at 25 degrees C. In contrast, heat tolerance was not influenced by acclimation temperature. Low temperature acclimation was associated with the increase in proportion of ethanolamine (from 52.7% to 58.5% in 25 degrees C-acclimated versus 15 degrees C-acclimated flies, respectively) at the expense of choline in GPLs. Relatively small, but statistically significant changes in lipid molecular composition were observed with decreasing acclimation temperature. In particular, the proportions of glycerophosphoethanolamines with linoleic acid (18:2) at the sn-2 position increased. No overall change in the degree of fatty acid unsaturation was observed. Thus, cold tolerance but not heat tolerance was influenced by preimaginal acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster.  相似文献   

13.
研究了低温(0~5℃)胁迫下钼对冬小麦抗氧化系统和膜脂过氧化的影响。结果表明,低温胁迫下施钼植株电解质渗漏率和丙二醛含量显著降低。施用钼肥提高了冬小麦叶片中抗氧化酶类如超氧化物歧化酶(SOD,EC1.15.1.1)、过氧化物酶(POX,EC1.11.1.7)和过氧化氢酶(CAT,ECl.11.1.6)的活性。低温胁迫下施钼对抗氧化酶(SOD、POX和CAT)活性提高幅度比常温下高。不论常温还是低温下,施铝均提高了冬小麦叶片中抗坏血酸和脯氨酸含量,低温胁迫下提高幅度更大。常温下缺钼和施钼处理后,叶片中类胡萝卜素含量差异不显著;低温下施钼后,冬小麦叶片类胡萝卜素含量显著增加。因此,低温胁迫下施钼植株活性氧清除能力增强、细胞膜伤害减轻可能是冬小麦抗寒力提高的原因之一。  相似文献   

14.
在高温锻炼(37℃,2h)过程中,豌豆(Pisum sativum L.)叶片过氧化氢(H_2O_2)和游离态水杨酸(SA)含量与质膜ATP酶(H~ -ATPase)活性都有一个高峰,H_2O_2的迸发早于游离态SA的积累,而质膜H~ -ATPase活性高峰的出现则迟于SA高峰;活性氧清除剂、抗氧化剂、质膜NADPH氧化酶抑制剂和H_2O_2的淬灭剂预处理均可有效地阻止高温下H_2O_2和SA的积累以及质膜H~ -ATPase活性的增加。根据以上结果推测,H_2O_2、质膜H~ -ATPase和SA均参与耐热性诱导相关的信号传递,前者作用于SA的上游,而后者在SA下游起作用。  相似文献   

15.
Ultrasonic radiation produced a dose-dependent linear increase in lipid peroxidation in the liposomal membrane as reflected in the measurements of conjugated dienes, lipid hydroperoxides, and malondialdehydes (MDA). Production of MDA was confirmed by spectrophotometric and spectrofluorometric methods including the detection of excitation (360 nm) and emission (435 nm) maxima characteristic of the MDA-glycine adduct formed after addition of glycine in the system. Ultrasound of frequencies 20 kHz (used for laboratory purposes) and 3.5 MHz (used for clinical purposes) produced MDA in an identical manner. Ultrasound-induced lipid peroxidation was enhanced synergistically by 2.5 X 10(2) microM ascorbic acid but inhibited significantly by 10(4) microM ascorbic acid. Ultrasound-induced production of MDA could not be inhibited to any significant degree by superoxide dismutase, histidine, dimethylfuran, or beta-carotene but was very significantly inhibited by cholesterol (93%), butylated hydroxytoluene (88%), alpha-tocopherol (85%), sodium benzoate (80%), dimethyl sulfoxide (80%), sodium formate (64%), and EDTA (64%). The scavenger studies indicated the functional role of OH radicals in the initiation of ultrasound-induced lipid peroxidation.  相似文献   

16.
高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响   总被引:6,自引:3,他引:3  
以黄瓜品种‘津春4号’为试材,用叶面喷施的方法,研究了高温胁迫条件下外源褪黑素(melatonin,MT)对黄瓜幼苗活性氧(ROS)代谢的影响.结果表明:外源MT能显著降低高温胁迫下黄瓜叶片超氧阴离子自由基(O2-.)产生速率、过氧化氢(H2O2)含量、电解质漏渗率(relative electric conductivity, REC)及丙二醛(MDA)含量,增强黄瓜幼苗叶片中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,提高抗坏血酸(AsA)、谷胱甘肽(GSH)及可溶性蛋白质含量.说明MT预处理能抑制高温胁迫条件下黄瓜幼苗体内ROS的产生,提高抗氧化酶系的活性及抗氧化物质的含量,降低膜质过氧化水平,保护脂膜的完整性,减少电解质的外渗,减轻高温胁迫对幼苗造成的伤害,提高幼苗抗高温胁迫的能力.  相似文献   

17.
为解决金莲花幼苗在北方低海拔地区越夏过程中生长不良的问题,研究喷施水杨酸对高温胁迫下金莲花幼苗生理及电阻抗参数的影响,为提高金莲花的耐热性提供理论依据。以金莲花幼苗为试验材料,外源水杨酸(SA)设置4个浓度梯度(0.5、1.0、1.5、2.0 mmol·L-1),喷施处理后置于人工气候箱内进行昼38℃/夜30℃的高温胁迫试验。结果表明:喷施0.5~1.0 mmol·L-1水杨酸能有效降低金莲花幼苗的热害指数、相对电导率和丙二醛(MDA)含量,缓解叶绿素降解、显著提高可溶性糖含量、游离脯氨酸含量以及超氧化物歧化酶(SOD)活性,其中以1.0 mmol·L-1的水杨酸(SA)处理效果最好,说明喷施适宜浓度的SA可以提高金莲花的耐热性,从而缓解高温伤害。相关性分析表明,热害指数与相对电导率呈极显著正相关(P<0.01),与叶绿素总量、可溶性糖含量胞外电阻率(re)呈显著负相关(P<0.05),胞内电阻率(ri)与Pro含量呈显著正相关,弛豫时间(τ)与Pro含量和SOD活性呈极显著正相关,因此胞外电阻率、胞内电阻率和弛豫时间等电阻抗参数可作为金莲花对高温逆境反应的评价指标。  相似文献   

18.
Fluidity of membrane lipids of shoot and root tissue and of chloroplasts from young wheat seedlings of contrasting freezing tolerance was investigated by measuring the motion and order parameters after spin labeling. A striking similarity was observed in membrane lipid fluidity of the five cultivars grown at 22 C. After cold hardening by growth at 2 C, a small change in membrane lipid fluidity was observed, but this was not correlated with the development of freezing tolerance, and there was no alteration in the transition temperature of membrane lipids. The results show that neither changes in membrane lipid fluidity nor transition temperature are a necessary feature of cold acclimation in wheat.  相似文献   

19.
The provision of supplemental ascorbic acid has been reported to lower the body temperature of chickens maintained at elevated environmental temperatures. Since body temperature is the net effect of heat production and heat loss, it is not known if the reductions in body temperature were due to a lower heat production or an increase in heat loss. The purpose of this work was to determine if supplemental ascorbic acid facilitates heat loss in chickens exposed to an elevated temperature. On day 12 post-hatch broiler chickens were implanted intra-abdominally with a thermo-sensitive radio transmitter. The following day, birds were placed inside an indirect calorimeter maintained at 34 C for 24 h and provided water containing 0 or 400 ppm ascorbic acid. Oxygen consumption, carbon dioxide production, heat production, respiratory exchange ratio, and body core temperature were measured for 3 h; beginning 21 h after the birds were placed inside the calorimeter. No differences were observed in heat production or body core temperature between birds provided or not and 400 ppm ascorbic acid. This suggests that ascorbic acid has no effect on heat loss. Birds provided ascorbic acid did exhibit a significantly lower respiratory exchange ratio suggesting a greater utilization of lipid for energy production. Although lipid has a lower heat increment compared with protein and carbohydrate, the significance of this finding to birds exposed to elevated temperature is not known. In conclusion, under the conditions of this study the provision of supplemental ascorbic acid to broiler chickens maintained at an elevated temperature did not affect heat loss as inferred from measured heat production and body core temperature.  相似文献   

20.
A temperature decrease usually induces an ordering effect in membrane phospholipids that can lead to membrane dysfunction. Ectotherms typically counteract this temperature effect by remodeling membrane lipids as stipulated in the homeoviscous adaptation theory (HVA). Previous studies mostly focused on the remodeling of membrane lipids during long-term acclimatization or acclimation at constant temperature regimes, whereas in nature, many organisms experience variations in temperature on a daily basis and must react to this changing thermal environment. The objective of this study was to examine the composition of membrane lipids in oysters subjected to long-term acclimation at constant temperatures (12 or 25 degrees C) or to environmentally realistic daily fluctuations in temperature between 12 and 25 degrees C for 7 d. The lipid composition of gill in oysters subjected to long-term acclimation at a constant temperature or to daily temperature fluctuations varied in a way consistent with HVA: oysters adjusted their phospholipid to sterol ratio in response to long-term acclimation to a constant temperature but not to daily temperature fluctuations. In contrast, the unsaturation index of polar lipids in oysters varied in response to both long-term acclimation to a constant temperature and to daily temperature fluctuations, mainly due to changes in 22:6n-3 and 20:5n-3. The 20:4n-6 levels in oyster gills increased as temperature rose, suggesting an increasing availability of this fatty acid for eicosanoid biosynthesis during stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号