首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
2.
3.
4.
The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed crista junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites between outer membrane and inner boundary membrane promote import of preproteins, metabolite channeling, lipid transport, and membrane dynamics (Frey and Mannella, 2000; Sesaki and Jensen, 2004; Hoppins et al., 2007, 2011; Neupert and Herrmann, 2007; Chacinska et al., 2009; Connerth et al., 2012; van der Laan et al., 2012).Open in a separate windowFigure 1.MICOS complex. (A) The MICOS complex (hypothetical model), previously also termed MINOS, MitOS, or Mitofilin/Fcj1 complex, is required for maintenance of the characteristic architecture of the mitochondrial inner membrane (IM) and forms contact sites with the outer membrane (OM). In budding yeast, six subunits of MICOS have been identified. All subunits are exposed to the intermembrane space (IMS), five are integral inner membrane proteins (Mic10, Mic12, Mic26, Mic27, and Mic60), and one is a peripheral inner membrane protein (Mic19). Mic26 is related to Mic27; however, mic26Δ yeast cells show considerably less severe defects of mitochondrial inner membrane architecture than mic27Δ cells (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011). The MICOS complex of metazoa additionally contains Mic25, which is related to Mic19, yet subunits corresponding to Mic12 and Mic26 have not been identified so far. MICOS subunits that have been conserved in most organisms analyzed are indicated by bold boundary lines. (B, top) Wild-type architecture of the mitochondrial inner membrane with crista junctions and cristae. (bottom) This architecture is considerably altered in micos mutant mitochondria: most cristae membranes are detached from the inner boundary membrane and form internal membrane stacks. In some micos mutants (deficiency of mammalian Mic19 or Mic25), a loss of cristae membranes was observed (Darshi et al., 2011; An et al., 2012). Figure by M. Bohnert (Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany).To understand the complex architecture of mitochondria, it will be crucial to identify the molecular machineries that control the interaction between mitochondrial outer and inner membranes and the characteristic organization of the inner membrane. A convergence of independent studies led to the identification of a large heterooligomeric protein complex of the mitochondrial inner membrane conserved from yeast to humans that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (Fig. 1 A). Several names were used by different research groups to describe the complex, including mitochondrial contact site (MICOS) complex, mitochondrial inner membrane organizing system (MINOS), mitochondrial organizing structure (MitOS), Mitofilin complex, or Fcj1 (formation of crista junction protein 1) complex (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). Mitofilin, also termed Fcj1, was the first component identified (Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005) and was observed enriched at crista junctions (Rabl et al., 2009). Mutants of Mitofilin/Fcj1 as well as of other MICOS/MINOS/MitOS subunits show a strikingly altered inner membrane architecture. They lose crista junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (
Standard nameFormer namesYeast ORFReferences
Complex
MICOSMINOS, MitOS, MIB, Mitofilin complex, and Fcj1 complexXie et al., 2007; Rabl et al., 2009; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013
Subunits
Mic10Mcs10, Mio10, Mos1, and MINOS1YCL057C-AHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013
Mic12Aim5, Fmp51, and Mcs12YBR262CHess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013
Mic19Aim13, Mcs19, CHCH-3, CHCHD3, and MINOS3YFR011CXie et al., 2007; Hess et al., 2009; Darshi et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013
Mic25 (metazoan Mic19 homologue)CHCHD6 and CHCM1Xie et al., 2007; An et al., 2012
Mic26Mcs29, Mio27, and Mos2YGR235CHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011
Mic27Aim37, Mcs27, APOOL, and MOMA-1YNL100WHess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013
Mic60Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMT, and MINOS2YKR016WIcho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; Körner et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013
Open in a separate windowAPOOL, apolipoprotein O–like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CXnC motif proteins) in the Saccharomyces Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.  相似文献   

5.
Mitochondrial regulation of ferroptosis     
Boyi Gan 《The Journal of cell biology》2021,220(9)
  相似文献   

6.
Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond     
Ann-Christin Borchers  Lars Langemeyer  Christian Ungermann 《The Journal of cell biology》2021,220(9)
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.

Membrane identity in the endomembrane systemOne key feature of eukaryotic cells is the presence of membrane-enclosed organelles, which constantly exchange proteins, lipids, or metabolites via vesicular transport or membrane contact sites (MCSs). Along the endomembrane system, vesicular trafficking requires vesicle budding from the donor membrane and directed transport toward and fusion with the acceptor compartment. The resulting trafficking routes form a regulated network that connects not only the internal organelles, but also the interior and exterior of the cell.The specific identity of organelles within the endomembrane system is defined by the lipid and protein composition of their membranes. This includes signaling lipids such as phosphoinositides (PIPs) and small GTPases of the Ras superfamily of small G proteins, namely of the Rab, Arf, and Arl families, which act as binding platforms for accessory proteins involved in multiple membrane trafficking processes (Balla, 2013).Rab GTPases, like other small GTPases, are key regulatory proteins that switch between an inactive GDP-bound (Rab-GDP) and an active GTP-bound (Rab-GTP) state (Barr, 2013; Goody et al., 2017; Hutagalung and Novick, 2011). Rabs are posttranslationally modified by the addition of geranylgeranyl moieties to C-terminal cysteine residues, which allow their reversible membrane association. Within the cytosol, Rab-GDP is kept soluble by binding to the chaperone-like GDP dissociation inhibitor (GDI). At the target membrane, an organelle-specific guanine nucleotide exchange factor (GEF) activates the Rab after its previous release from GDI, a process possibly supported by other factors (Dirac-Svejstrup et al., 1997). GTP binding stabilizes two loops in the Rab GTPase domain, which allows recruitment and binding of various so-called effector proteins to the Rab-GTP on the membrane. Rab GTPases are inefficient enzymes with a low intrinsic GTP hydrolysis rate and thus depend on a GTPase-activating protein (GAP) to hydrolyze bound GTP. GDI then extracts the Rab-GDP and keeps it soluble in the cytosol until the next activation cycle (Barr, 2013; Goody et al., 2017; Hutagalung and Novick, 2011). In addition to their conserved GTPase domain, Rabs contain a hypervariable C-terminal domain (HVD), which supports GEF recognition and therefore correct localization of the Rab (Thomas et al., 2018)Among various other functions, Rab GTPases are critical for the fusion of vesicles with the acceptor membrane by recruiting tethering proteins, which bring the two membranes into close proximity. Tethers, together with Sec1/Munc18 proteins, promote the folding of membrane-bound SNAREs at the vesicle and the target membrane into tetrameric coiled-coil complexes. This process further reduces the distance between the membranes, bypasses the hydration layer on membranes, and results in mixing of lipid bilayers and consequently membrane fusion (Wickner and Rizo, 2017; Ungermann and Kümmel, 2019).Organization and function of the endolysosomal pathwayEndocytosis allows the rapid adaptation of plasma membrane composition in response to changing environmental conditions by the uptake of membrane proteins from the plasma membrane, which are either transported to and finally degraded in the lysosome or sorted back to the plasma membrane, e.g., receptors after releasing their cargo within the endosomal lumen (Sardana and Emr, 2021). A third fate of endocytosed cargo is trafficking to the Golgi (Laidlaw and MacDonald, 2018). In addition, various kinds of endocytosis allow the uptake of very large particles such as bacteria during phagocytosis or fluids during pinocytosis (Huotari and Helenius, 2011; Babst, 2014). The endocytic pathway is also involved in the quality control system of plasma membrane proteins and allows degradation of damaged cell surface proteins as well as the down-regulation of nutrient transporters and receptors (Sardana and Emr, 2021). During endocytosis, membrane proteins marked by ubiquitination are incorporated into endocytic vesicles, which pinch off the plasma membrane and fuse with the tubular-shaped early endosome (EE) in the cell periphery (Fig. 1 A). The EE serves as a sorting station, at which membrane proteins are either sorted into tubular structures and brought to the recycling endosome (RE) or get incorporated into intraluminal vesicles (ILVs) with the help of four endosomal sorting complexes required for transport (ESCRTs; Sardana and Emr, 2021). A prerequisite for the degradation of cargo in the lysosome is the maturation of EEs into late endosomes (LEs) by changing the organelle surface composition, including specific Rab GTPases and PIPs, and organelle shape. The LE is eventually spherically shaped, containing multiple ILVs and a more acidified lumen. Therefore, it is also called Multivesicular Body (MVB). Upon fusion with the lysosome, ILVs and their content are degraded into precursor molecules, which are reused by the cell (Fig. 1 A; Sardana and Emr, 2021; Huotari and Helenius, 2011).Open in a separate windowFigure 1.Rab GTPases in the endolysosomal pathway.(A) Localization of key Rab GTPases along the endolysosomal pathway. Endocytic vesicles containing cargo (blue dot) or receptor proteins (red) are substrates of endocytosis. Endocytic vesicles (EV) fuse with the EE. Rabs are shown by numbers: Rab5 (green) on early EE is replaced by Rab7 (black) on multivesicular bodies (MVBs). GEFs are shown in blue. Positioning of lysosomes (Lys) depends on binding to motor proteins by either Arl8b (orange, 8b) or Rab7. Recycling occurs via REs involving Rab4, Rab11, and Rab14. MTOC, microtubule organizing center; Nuc, nucleus. (B) Spatiotemporal Rab5-to-Rab7 transition during endosomal maturation. Rab5 (green graph) is rapidly recruited to EE and replaced by Rab7. (C) Model of Rab7 GEF recruitment and activation on endosomes. Mon1-Ccz1 (or the trimeric complex additionally containing Rmc1/C18orf8/Bulli, as indicated by the unlabeled hexagon) requires Rab5-GTP for activation to promote Rab7 recruitment. For details, see text.Central functions of Rab5 and Rab7Along the endolysosomal system, several Rabs coordinate sorting and recycling processes at the EE and LE. Early endosomal Rab5 and late endosomal Rab7 are here the key Rabs conserved among species. Their spatiotemporal activation and therefore functions are tightly coordinated on the level of the MVB/LE (Fig. 1 B).In yeast, the Rab5-like GTPases Vps21, Ypt52, Ypt52, and Ypt10 and the Rab7-like Ypt7 structure the endocytic pathway (Singer-Krüger et al., 1994; Wichmann et al., 1992). In mammalian cells, Rab5 (with Rab5a, b, and c isoforms having nonredundant functions in the endocytic network; Chen et al., 2014, 2009) and Rab7 (with Rab7a and b isoforms, of which Rab7a is the main actor in transport processes along the endocytic pathway [Guerra and Bucci, 2016], whereas Rab7b has a role in the transport from endosome to the Golgi [Kjos et al., 2017; Progida et al., 2010]) are present (Wandinger-Ness and Zerial, 2014). While the overall organization of the endocytic pathway into EE and LE is conserved, yeast seems to have a more ancestral minimal endomembrane system, where the trans-Golgi network acts as EE and RE (Day et al., 2018). In mammalian cells, the more complex endolysosomal system depends on additional Rabs. Rab4 is involved in protein sorting at the EE, activation of Rab5, and recycling of cargo back to the plasma membrane (Kälin et al., 2015; Wandinger-Ness and Zerial, 2014; de Renzis et al., 2002), whereas Rab11 and Rab14 function at REs (Fig. 1 A; Linford et al., 2012; Takahashi et al., 2012). Furthermore, Rab9 is required for retrograde transport between LEs and the trans-Golgi network (Lombardi et al., 1993), and Rab32 and Rab38 function in the biogenesis of lysosome-related organelles (Bowman et al., 2019; Gerondopoulos et al., 2012; Wasmeier et al., 2006).During endosomal maturation, Rab5 is exchanged for Rab7 (Rink et al., 2005; Poteryaev et al., 2010). This Rab switch is highly conserved and a prime example of coordinated Rab turnover during organelle maturation. The rapid transition from Rab5 to Rab7 was explained by a so-called cutout switch, where activation of Rab5 fosters at a threshold value activation of Rab7, which in turn suppresses further Rab5 activation (Fig. 1 B; Del Conte-Zerial et al., 2008). Such a principle may apply to most Rab cascades (Barr, 2013).Rab5 has multiple functions on EEs (Wandinger-Ness and Zerial, 2014). It interacts with a number of effectors such as the lipid kinase Vps34, Rabaptin-5, which is found in complex with the Rab5-GEF Rabex5, Rabenosyn-5, and tethers such as the class C core vacuole/endosome tethering (CORVET) complex or EEA1. Therefore, Rab5 is critical for the homotypic fusion of EEs (Gorvel et al., 1991; Ohya et al., 2009; Christoforidis et al., 1999a, b; Perini et al., 2014; Marat and Haucke, 2016). Vps34 was initially identified in yeast (Schu et al., 1993) and exists in two heterotetrametric complexes, which differ by just one subunit (Kihara et al., 2001). Complex I resides on autophagosomes, whereas complex II functions on endosomes (Fig. 2 D). Both complexes generate a local pool of phosphatidylinositol-3-phosphate (PI3P), to which several effectors bind, including the early endosomal tether EEA1 and ESCRTs (Wallroth and Haucke, 2018). Recent structural insights revealed that Rab5 recruits and activates endosomal complex II, whereas Rab1 acts similarly on autophagosomal complex I (Tremel et al., 2021). This explains how Rab5-GTP promotes the formation of a local endosomal PI3P pool (Franke et al., 2019). Interestingly, Caenorhabditis elegans VPS-34 can recruit the Rab5 GAP TBC-2 to endosomal membranes, suggesting a possible link between PI3P generation and Rab5 inactivation (Law et al., 2017).Open in a separate windowFigure 2.Rab7 activation on autophagosomes.(A and B) Atg8-dependent Mon1-Ccz1 recruitment and activation. Atg8 (violet) recruits Mon1-Ccz1 (and likely also the trimeric GEF complex in higher eukaryotes, as indicated by the unlabeled hexagon) and allows fusion with lysosome. (C) Model of spatiotemporal Rab7 activation on autophagosomes. Maturation is prerequisite for successful fusion. (D) Comparison of proteins involved in maturation of LEs and autophagosomes.Rab7 is a key component in the late endocytic pathway (Langemeyer et al., 2018a). It is found on LEs, lysosomes, and autophagosomes and is required for the biogenesis and positioning of LEs and lysosomes, for MCSs of lysosomes with other organelles, and for the fusion of endosomes and autophagosomes with lysosomes (Fig. 1 A; Guerra and Bucci, 2016; McEwan et al., 2015; Ballabio and Bonifacino, 2020; Cabukusta and Neefjes, 2018). Even though both the metazoan Rab7 and yeast Ypt7 are activated by the homologous Mon1-Ccz1 GEF complex and are required for endosomal maturation, their function on LEs and lysosomes is not entirely conserved. In yeast, active Ypt7 directly binds the hexameric homotypic fusion and vacuole protein sorting (HOPS) tethering complex and mediates SNARE-dependent fusion of LEs or autophagosomes with vacuoles as well as homotypic vacuole fusion (Wickner and Rizo, 2017; Gao et al., 2018a, b). In higher eukaryotes, HOPS also promotes fusion between LEs and lysosomes, yet apparently does not directly interact with Rab7, but rather with the GTPases Rab2 and Arl8b (Gillingham et al., 2014; Fujita et al., 2017; Lőrincz et al., 2017; Khatter et al., 2015). How Rab7 contributes to fusion at the lysosome is still unclear. Rab7 interacts with several proteins on lysosomes, including the cholesterol sensor ORPL1 and the dynein-interacting lysosomal RILP (Jordens et al., 2001; Cantalupo et al., 2001; Rocha et al., 2009). Both proteins also bind HOPS (van der Kant et al., 2015, 2013), as does another multivalent adaptor protein, PLEKHM1 (McEwan et al., 2015), which binds both Arl8b and Rab7 (Marwaha et al., 2017). Interestingly, Arl8b in complex with its effector SKIP also binds TBC1D15, a Rab7 GAP, which may displace Rab7 from LEs before their fusion with lysosomes (Jongsma et al., 2020). It is thus possible that fusion of LEs and autophagosomes with lysosomes requires a complex coordination of the three GTPases, Rab7, Arl8b, and Rab2, with the HOPS complex and other effectors. Some of this complexity may be explained by a second function of Rab7 and Arl8b in binding adapters of the kinesin or dynein motor protein family, which connect LEs and lysosomes to the microtubule network. Thereby Rab7 and Arl8b control the positioning of these organelles to the periphery or perinuclear area via the microtubule network, which has functional implications (Fig. 1 A; Cabukusta and Neefjes, 2018; Bonifacino and Neefjes, 2017). Perinuclear lysosomes are the main places for degradation of cargo delivered by endosomes and autophagosomes, whereas peripheral lysosomes are involved in the regulation of mammalian target of rapamycin complex1 (mTORC1), the master regulator switching between cell growth and autophagy (Johnson et al., 2016; Korolchuk et al., 2011). This also may be connected to the role of lysosomes in lipid homeostasis, as Rab7 seems to control cholesterol export via the lysosomal NPC1 (van den Boomen et al., 2020; Shin and Zoncu, 2020; Castellano et al., 2017). How far the acidification state of perinuclear and peripheral lysosomes also affects their Rab7 and Arl8b mediated localization is still under debate (Ponsford et al., 2021). Thus, it is likely that Rab7 coordinates LE and lysosomal transport and fusion activity in coordination with endosomal biogenesis and cellular metabolism.GEF function and regulation in endosomal maturationThe heterodimeric complex Mon1-Ccz1 was identified as the GEF for Ypt7 in yeast and for Rab7 in higher eukaryotes (Nordmann et al., 2010; Gerondopoulos et al., 2012). The Mon1-Ccz1 complex is an effector of Rab5 (Kinchen and Ravichandran, 2010; Langemeyer et al., 2020; Cui et al., 2014; Li et al., 2015; Poteryaev et al., 2010; Singh et al., 2014), suggesting a direct link to endosomal maturation and Rab turnover (Fig. 1 B). Structural analyses uncovered how the two central longin domains in Mon1 and Ccz1 displace the bound nucleotide from Ypt7 (Kiontke et al., 2017). Unlike yeast, the metazoan Mon1-Ccz1 complex contains a third subunit termed RMC1 or C18orf8 in mammals and Bulli in Drosophila (Vaites et al., 2017; Dehnen et al., 2020; van den Boomen et al., 2020). Even though loss of this subunit impairs endosomal and autophagosomal biogenesis, this subunit does not affect GEF activity toward Rab7 in vitro (Dehnen et al., 2020; Langemeyer et al., 2020), indicating that the general GEF mechanism is conserved across species. As Rab7 is required on LEs, autophagosomes, and lysosomes, spatial recruitment and activity of the Rab7 GEF must be tightly regulated.Rab5 activates the Mon1-Ccz1 GEF complexDuring endosomal maturation, the Mon1-Ccz1 complex is recruited to Rab5- and PI3P-positive endosomes and activates Rab7 for subsequent fusion of endosomes with lysosomes (Nordmann et al., 2010; Poteryaev et al., 2010; Cabrera and Ungermann, 2013; Cabrera et al., 2014; Singh et al., 2014; Fig. 1 C). However, it was postulated that (but remained unclear how) Rab5 affects Rab7 GEF activity. The activity of GEFs is in the simplest way determined in solution, where the respective Rab, which has been loaded with a fluorescent- or radioactive-labeled nucleotide, is incubated with the GEF (Schoebel et al., 2009; Bergbrede et al., 2009). GDP or GTP addition then triggers displacement of the bound nucleotide, which results in a decrease of fluorescence or increase of radioactive signal in solution. Such in-solution assays can uncover the Rab specificity of GEFs yet cannot recapitulate the membrane context and potential regulating factors. Recent approaches therefore used liposomes and prenylated Rab:GDI complexes to address the role of membrane lipids and proteins in GEF activation (Thomas and Fromme, 2016; Thomas et al., 2018; Langemeyer et al., 2020, 2018b; Cezanne et al., 2020; Bezeljak et al., 2020). Details of these reconstituted systems are discussed below. In yeast, prenylated, membrane-bound, and GTP-loaded Rab5-like Vps21 was surprisingly inefficient as a single factor to recruit Mon1-Ccz1 to membranes, whereas addition of PIPs together with Vps21 enhanced recruitment (Langemeyer et al., 2020). However, activity of both the yeast and metazoan Rab7 GEF complexes showed a striking dependence on membrane-bound Rab5-GTP in the GEF assay, whereas PIPs alone were not sufficient to drive GEF activation. These observations demonstrate that the Mon1-Ccz1 complex depends on membrane-bound Rab5 for its Rab7 GEF activity, which nicely explains some of the previous in vivo observations on endosomal Rab5-to-Rab7 exchange (Poteryaev et al., 2010; Rink et al., 2005).This Rab exchange, which occurs similarly on phagosomes (Jeschke and Haas, 2016), is in vivo likely regulated in space and time. Time-lapse microscopy studies revealed that levels of fluorescently labeled Rab5 decreased, while fluorescently labeled Rab7 increased on the surface of a tracked endosome (Poteryaev et al., 2010; Yasuda et al., 2016). Analysis of the spatiotemporal Rab5-to-Rab7 transition in mammalian cells revealed that Rab5-positive endosomes can separate from Rab7-positive membranes, suggesting that a stepwise maturation process also occurs in some cells (Skjeldal et al., 2021). However, in all cases, only some insights on Mon1-Ccz1 regulation are presently available. Phosphorylation is one potential regulatory mechanism in GEF regulation (Kulasekaran et al., 2015). Indeed, yeast Mon1-Ccz1 is a substrate of the vacuolar casein kinase 1 Yck3 (Lawrence et al., 2014). When added to the Rab5-dependent GEF assay, Yck3-mediated phosphorylation inhibited Mon1-Ccz1 GEF activity, presumably by blocking the Rab5 interaction (Langemeyer et al., 2020). How the kinase is in turn regulated and whether this is the only mechanism of Mon1-Ccz1 GEF control is currently unknown.Rab7 activation and function in autophagyThe lysosome is also the destination of the autophagic catabolic pathway. During autophagy, portions of the cytosol, specific organelles, aggregates, or pathogens are engulfed into a double-layered membrane, which upon closure fuses with the lysosome for degradation and reuse of its content (Fig. 2 A; Zhao and Zhang, 2019; Nakatogawa, 2020). Autophagy is a versatile pathway required for adaptation of a cell’s organelle repertoire and quality control.Rab7 is found not just on LEs, but also on autophagosomes (Hegedűs et al., 2016; Gao et al., 2018a), although its precise function seems to differ between organisms (Kuchitsu and Fukuda, 2018). In yeast, the Rab7-homologue Ypt7 mediates HOPS-dependent fusion of autophagosomes with vacuoles (Gao et al., 2018a). In metazoan cells, Rab7 and its effectors PLEKHM1 and WDR91 are required for autolysosome/amphisome-lysosome fusion, yet Rab7 does not seem to directly bind HOPS during fusion of autophagosomes with lysosomes (Xing et al., 2021; McEwan et al., 2015; Gutierrez et al., 2004; Kuchitsu and Fukuda, 2018).Given the striking Rab5 dependence on endosomes in Mon1-Ccz1 activation, the question arises, how does Mon1-Ccz1-mediated Rab7 activation happen on autophagosomes? Some data suggest that yeast and metazoan Rab5 is directly involved in the autophagy process such as autophagosome closure (Ravikumar et al., 2008; Bridges et al., 2012; Zhou et al., 2019, 2017), whereas others do not find direct evidence, for instance in Drosophila (Hegedűs et al., 2016). Studies in yeast revealed that the LC3–like Atg8 protein directly binds and recruits Mon1-Ccz1 to the autophagosomal membrane during starvation, which results in Ypt7 activation as a prerequisite of HOPS-dependent fusion with the vacuole (Gao et al., 2018a; Fig. 2 B). Tight regulation of Mon1-Ccz1 GEF-activity is apparently mandatory to avoid fusion of premature autophagosomes with the vacuole (Fig. 2 C). How Mon1-Ccz1 localization to either endosomes or autophagosomes is coordinated (also with regard to similarities in organelle features; Fig. 2 D) and whether Atg8/LC3 also regulates the activity of the GEF complex are not yet known.Of note, an endosomal-like Rab5-to-Rab7 cascade also occurs on the mitochondrial outer membrane during mitophagy in metazoan cells, a selective pathway to degrade damaged mitochondria (Yamano et al., 2018). Here, Rab5 is activated by a mitochondrially localized Rab5 GEF, followed by Mon1-Ccz1 recruitment and Rab7A activation, which then orchestrates the subsequent mitophagy process. How this process is coupled to autophagosome maturation, and whether Rab7 is then again needed on the formed autophagosome, has not been addressed so far.These data nevertheless demonstrate the adjustable recruitment of Mon1-Ccz1 during endosomal maturation and autophagosome formation and even to the mitochondrial surface. Targeting of the Mon1-Ccz1 complex is likely coordinated between all these processes.A role for ER-endosome MCSs in endosome maturationEndosomes form MCSs with the ER. Such contact sites have multiple roles ranging from lipid transport to ion exchange (Scorrano et al., 2019; Reinisch and Prinz, 2021). The endosome-ER contact depends on Rab7 and contributes to transport and positioning of endosomes, supports endosomal fission, and facilitates endocytic cargo transport and cholesterol transfer between LEs and the ER (Rocha et al., 2009; Friedman et al., 2013; Rowland et al., 2014; Raiborg et al., 2015; Jongsma et al., 2016). Rab7 activation via the Mon1-Ccz1 complex is required for cholesterol export from the lysosome, likely in the context of MCSs. Rab7 binds to the NPC1 cholesterol transporter and may thus promote cholesterol export only at MCSs with the ER or other organelles (van den Boomen et al., 2020). The ER is also involved in endosome maturation, which requires an MCS between Reticulon-3L on the ER and endosomal Rab9. In fact, Rab9 is recruited shortly before the Rab5-to-Rab7 transition (Wu and Voeltz, 2021; Kucera et al., 2016). How Rab9 activation and MCS formation are coordinated with endosomal maturation has not yet been revealed. It is likely that the spatial positioning of endosomes (Fig. 1 A), their acidification, and TORC1 activity also contribute to this process (Bonifacino and Neefjes, 2017; Johnson et al., 2016).Retromer opposes Rab7 activationRetromer is a conserved heteropentameric complex that mediates the formation of vesicular carriers at the endosome and thus allows the transport of receptors back to the Golgi or plasma membrane. The complex consists of a trimeric core (Vps35, Vps26, and Vps29), which binds either a SNX1-SNX4 heterodimer or a SNX3 monomer (Simonetti and Cullen, 2018; Leneva et al., 2021; Kovtun et al., 2018). Retromer is an effector of Rab7, but also recruits the Rab7 GAP TBC1D5 in metazoan cells (Rojas et al., 2008; Kvainickas et al., 2019; Jimenez-Orgaz et al., 2018; Distefano et al., 2018; Seaman et al., 2009). This dual function of retromer may facilitate the formation of endosomal tubules after the Rab5-to-Rab7 transition, and these tubules eventually lose Rab7 once scission has occurred (Jongsma et al., 2020).It is not yet clear how conserved the Rab7-retromer-GAP connection is. Yeast retromer is also an effector of the Rab7-like Ypt7 and coordinates protein recycling at the endosome (Liu et al., 2012; Balderhaar et al., 2010), yet a role of a Rab7 GAP has not been described. However, yeast retromer also binds to the Rab5 GEFs Vps9 and Muk1 (Bean et al., 2015), which suggests that both Rab5 and Rab7 function contribute to efficient tubule formation at the endosome. Whether and how the Rab7 GEF Mon1-Ccz1 is functionally coordinated with retromer will be a topic of future studies.GEF regulation along the endomembrane systemIn the previous section, we focused mainly on the role of the Rab7 GEF in the context of endosome and autophagosome maturation. However, the timing of GEF activation and the subsequent recruitment of their target Rabs is critical for all membrane trafficking processes along the endomembrane system to guarantee maintenance of intracellular organelle organization. Rabs in turn interact with effectors, and effectors such as the lysosomal HOPS complex not only bind SNAREs but also catalyze their assembly and thus drive membrane fusion (Fig. 3 A). The spatiotemporal regulation of GEF activation is therefore at the heart of organelle biogenesis and maturation, and thus membrane trafficking. Within this section, we will now broaden our view by comparing different regulatory principles of GEFs.Open in a separate windowFigure 3.Regulatory mechanisms influence the activity of GEFs.(A) Hierarchical cascade of factors controlling membrane fusion. GEFs integrate various signals and initiate a cascade of protein activities, finally leading to membrane fusion. Signaling lipids, the presence of cargo proteins, upstream GTPases, and kinases influence the activity of GEFs and therefore determine Rab GTPase activation. Consequently, effector proteins such as tethering factors are recruited. This ultimately leads to SNARE-mediated lipid bilayer mixing and membrane fusion. (B) A Rab cascade in yeast exocytosis. Active Ypt32 and PI4P (yellow) on late Golgi compartments and secretory vesicles recruit the GEF Sec2, which in turn promotes activation and stable membrane insertion of the Rab Sec4. (C) Mon1-Ccz1 regulation by phosphorylation. Mon1-Ccz1 is recruited to and activated on LEs by coincidence detection of membrane-associated Rab5 and PI3P (red, Fig. 1 C) and promotes stable membrane insertion of Rab7. This process is terminated by Mon1-Ccz1 phosphorylation by the type I casein kinase Yck3 in yeast (orange). (D) A positive feedback loop of GEF activation on endocytic vesicles and EEs. The Rab5 GEF Rabex-5 binds ubiquitinated cargo on endocytic vesicles and is autoinhibited. Rab5 recruits Rabaptin-5, which binds Rabex-5 and releases the GEF from autoinhibition, generating a positive feedback loop. (E) Membrane factors determine GEF activity of TRAPPII at the trans-Golgi. TRAPPII activity for the Rab Ypt32 requires membrane-associated Arf1 and PI4P. (F) The length of the hypervariable domain of Golgi Rabs defines the substrate specificity for TRAPP complexes. The yeast Rab GTPases Ypt1 and Ypt32 differ in the length of their C-terminal HVD (box). TRAPPII and TRAPPIII complexes have the same active site, which is positioned away from the membrane, and thus discriminate Rab accessibility. (G) Phosphorylation as a mechanism to promote GEF activity. DENND1 GEF activity is autoinhibited, which is released by Akt-mediated phosphorylation. For details, see text.A Rab cascade in exocytosisAnother well-characterized Rab cascade is involved in the exocytic transport of secretory vesicles from the trans-Golgi network to the plasma membrane. At the trans-Golgi, the GEF transport protein particle II (TRAPPII) activates the Rab GTPase Ypt32, which then recruits the GEF Sec2 to secretory vesicles. Sec2 in turn activates the Rab Sec4, which binds the Sec15 subunit of the Exocyst tethering complex and allows vesicles to dock and fuse with the plasma membrane (Fig. 3 B; Walch-Solimena et al., 1997; Ortiz et al., 2002; Dong et al., 2007; Itzen et al., 2007). This cascade is conserved in humans. During ciliogenesis at the plasma membrane, the Ypt32 homologue Rab11 recruits the GEF Rabin 8, which in turn activates the human Sec4 homologue Rab8, a process regulated by phosphorylation (Hattula et al., 2002; Wang et al., 2015; Knödler et al., 2010). Interestingly, yeast Sec2 not only is a GEF, but also interacts with the Sec4 effector Sec15 (Medkova et al., 2006), a principle also observed in the endocytic Rab5 activation cycle, where the GEF Rabex5 interacts with the Rab5 effector Rabaptin-5. This dual role may also apply to Mon1-Ccz1, as the Mon1 homologue in C. elegans, SAND1, and yeast Mon1-Ccz1 can bind the HOPS tethering complex (Poteryaev et al., 2010; Nordmann et al., 2010).At the Golgi, phosphatidylinositol-4-phosphate (PI4P) contributes to directionality and spatiotemporal regulation of the exocytic Rab cascade. Sec2 binds both Ypt32 and PI4P on secretory vesicles via two binding sites, a process called coincidence detection. However, PI4P binding inhibits the interaction of Sec2 with Sec15. As vesicles reach the cell periphery, PI4P levels drop by the activity of Osh4, a lipid transporter, which allows Sec2 to bind the Exocyst subunit rather than Ypt32 (Ling et al., 2014; Mizuno-Yamasaki et al., 2010). In addition, Sec2 is phosphorylated by the plasma membrane–localized casein kinases Yck1 and Yck2 (Stalder et al., 2013; Stalder and Novick, 2016), resulting in effector recruitment rather than further Rab activation.Such a regulation may also apply to yeast Mon1-Ccz1. Anionic phospholipids and PI3P support Mon1-Ccz1 recruitment to liposomes and vacuoles (Langemeyer et al., 2020; Cabrera et al., 2014; Lawrence et al., 2014), whereas phosphorylation of the complex by the casein kinase Yck3 inhibits the binding of Mon1-Ccz1 to the Rab5-like Ypt10 and consequently reduces its GEF activity toward Rab7 (Fig. 3 C; Langemeyer et al., 2020). These observations suggest that the phosphorylation of GEFs by kinases may be a general regulatory principle in Rab cascades.Autoinhibition controls the Rab5 GEFAnother widely used regulatory mechanism is the autoinhibition of GEFs to control their activity. This has been analyzed in detail for the early endosomal Rab5-specific GEF Rabex-5, which interacts with the Rab5-effector Rabaptin-5 (Horiuchi et al., 1997). One factor for Rabex-5 recruitment to endocytic vesicles are ubiquitinated cargo proteins at the plasma membrane (Fig. 3 D; Mattera et al., 2006; Lee et al., 2006). Yet, isolated Rabex-5 has only low GEF activity in vitro (Delprato and Lambright, 2007). Structural analysis revealed that binding of Rabaptin-5 to Rabex-5 causes a rearrangement in the Rabex-5 C-terminus, which releases the GEF from autoinhibition and therefore facilitates nucleotide exchange of Rab5 (Delprato and Lambright, 2007; Zhang et al., 2014). On endosomes, increasing amounts of Rab5-GTP further promotes recruitment of the Rabex-5–Rabaptin-5 complex, resulting in a positive feedback loop of Rab5 activation and GEF recruitment (Lippé et al., 2001). Overall, Rabex-5 GEF activity is regulated by autoinhibition, a feedback loop with the Rab5 effector protein Rabaptin-5, and ubiquitinated cargo, which guarantees precise timing in establishing a Rab5-positive endosome. Of note, the Mon1 subunit of the Rab7 GEF can displace Rabex-5 from endosomal membranes (Poteryaev et al., 2010), which suggests a negative feedback loop of the Rab5 activation cascade once the next GEF is present.Regulation of Arf1 GEFs at different Golgi subcompartmentsThese key principles of GEF regulation in GTPase cascades are also found for Arf GTPases. Arf GTPases are soluble in their GDP-bound state by shielding their N-terminal myristate anchor in a hydrophobic pocket. Like Rabs, Arf GTPases are activated by specific GEFs, and their inactivation requires a specific GAP (Sztul et al., 2019). However, this review only highlights some key findings in the regulation of Rab GEFs and does not address regulation of the corresponding GAPs. Once activated, Arfs insert their lipid anchor and an adjacent amphipathic helix into membranes and are then able to bind effector proteins (Sztul et al., 2019). One of the best-studied Arf-GEFs is Sec7, which activates Arf1, an Arf GTPase involved in intra-Golgi trafficking (Achstetter et al., 1988). Studies on yeast Sec7 revealed that the protein is autoinhibited in solution and depends on three small GTPases—Arf1, the Rab Ypt1, and the Arf-like Arl1—for recruitment to the Golgi, a process supported by anionic lipids found in the late Golgi compartment. Importantly, the late Golgi Rabs Ypt31/32 strongly stimulate GEF activity (McDonold and Fromme, 2014; Richardson et al., 2012, 2016), indicating allosteric activation, as observed for Rab5-dependent Mon1-Ccz1 activation (Langemeyer et al., 2020). In this process, Sec7 dimerizes and promotes Arf1 recruitment and thus establishes a positive feedback loop. Interestingly, membrane binding of two additional Arf1 GEFs of the early Golgi, Gea1/2, depends on Rab1/Ypt1 and neutral membranes. Under these conditions, Gea1/2 is released from autoinhibition, although no positive feedback loop was observed (Gustafson and Fromme, 2017). Thus, Arf GEF regulation and Arf activation are tightly linked to multiple small GTPases and the membrane environment to establish Golgi compartments.Regulation and specificity of TRAPP complexes at the GolgiArf1 activation is also linked to the activation of Golgi-specific Rabs. Arf1-GTP binds to the highly conserved TRAPP GEF complexes at the Golgi (Fig. 3 E). Yeast and mammalian cells contain two TRAPP complexes. In yeast, both complexes share seven core components. TRAPPIII in addition contains Trs85, while accessory TRAPPII subunits are instead Trs130, Trs120, Trs65, and Tca17. Metazoan TRAPP complexes contain additional subunits (Lipatova and Segev, 2019).Interestingly, both complexes share the same catalytic site for Rab1/Ypt1 and Rab11/Ypt32. However, TRAPPIII provides GEF activity toward Rab1/Ypt1. Initially, it was proposed that TRAPPII can activate both Rab1/Ypt1 and Rab11/Ypt32 (Thomas et al., 2019, 2018; Thomas and Fromme, 2016; Riedel et al., 2018); however, it was recently shown that the TRAPPII complex is specific for Rab11/Ypt32 (Riedel et al., 2018; Thomas et al., 2019). Reconstitution of GEF activity on liposomes helped here to unravel TRAPP complex substrate specificity, since in solution assays are not adequate to address some of the features important for specific interactions: Rab11/Ypt32 has a longer HVD between the prenyl anchor and the GTPase domain compared with Rab1/Ypt1 (Fig. 3 F, box). The HVD not only binds TRAPPII but also stretches a longer distance from the membrane (Fig. 3 F). Thereby it allows Rab11/Ypt32, but not Rab1/Ypt1, to reach the active site of membrane-bound TRAPPII. Thus, substrate specificity is controlled by the distance of the GTPase domain from the membrane surface, since the active site seems to be located on the opposing site of the complex from the site of membrane interaction (Fig. 3 F; Thomas et al., 2019). The smaller TRAPPIII has its active site closer to the membrane, binds Ypt1 via its shorter HVD, and facilitates its activation, while Ypt32 with its longer HVD may be positioned too far away from the active site. In addition, both complexes require their respective membrane environment for optimal activity, indicating how Arf and Rab GEFs cooperate in Golgi biogenesis.The GEF DENND1 requires Arf5 for Rab35 activationRecently, another example of Arf-mediated Rab activation was reported (Kulasekaran et al., 2021). Rab35, an endocytic Rab found at the plasma membrane and REs (Sato et al., 2008; Kouranti et al., 2006), is involved in cell adhesion and cell migration by controlling the trafficking of β1-integrin and the EGF receptor (Klinkert and Echard, 2016; Allaire et al., 2013). Arf5 binds the Rab35 GEF DENND1 and stimulates its GEF activity, with dysregulation of this cascade linked to glioblastoma growth (Kulasekaran et al., 2021). DENND1 GEF activity is initially autoinhibited and relieved by phosphorylation via the central Akt kinase (Fig. 3 G; Kulasekaran et al., 2015). Similarly, another DENN-domain containing GEF, DENND3, is phosphorylated by the autophagy-specific ULK kinase and then activates Rab12, a small GTPase involved in autophagosome trafficking (Xu et al., 2015). Thus, it seems that Rab GEF activation is more generally linked to other trafficking proteins, such as Arfs, and controlled by kinases and likely also phosphatases.Lessons from reconstitutionOrganelle biogenesis and maintenance in the endomembrane system are tightly linked to the correct spatial and temporal activation of Rab GTPases. A small yeast cell gets by with 11 Rabs, while human cells encode >60 (Hutagalung and Novick, 2011). Rab activation, and therefore membrane identity, of each organelle depends on the cognate GEF. This puts GEFs into the driver’s seat of any Rab-directed function at cellular membranes. It seems that GEFs integrate, by several regulatory loops, incoming signals from various sources such as membrane composition, cargo proteins, upstream GTPases, or kinases/phosphatases (Fig. 3 A). Yet our insights on the specific membrane targeting and regulation of GEFs remain incomplete for want of available experimental approaches. We briefly discuss here how recent advances on the reconstitution of GEF-mediated Rab activation at model membranes have advanced our understanding of organelle maturation and biogenesis.Reconstitution of any reaction to uncover the essential constituents is limited by the available tools. GEFs, Rabs, Sec18/Munc1 proteins, tethering factors, and SNAREs are for instance required for membrane fusion (Fig. 3 A). Initial assays focused on SNAREs and revealed their important but rather inefficient fusogenicity (Weber et al., 1998). Further analyses uncovered critical activation steps for SNAREs (Malsam et al., 2012; Pobbati et al., 2006; Südhof and Rothman, 2009; Jahn and Scheller, 2006), yet fusion at physiological SNARE concentrations in various in vitro systems does not occur, unless assisted by chaperoning Sec1/Munc18 proteins and tethering factors (Bharat et al., 2014; Lai et al., 2017; Mima and Wickner, 2009; Ohya et al., 2009; Wickner and Rizo, 2017). Most tethers again depend on Rabs for their localization, and Rab localization to membranes requires a GEF (Cabrera and Ungermann, 2013), whose activity can be a limiting factor for fusion (Langemeyer et al., 2020, 2018b). The long avenue of understanding the mechanism and regulation of membrane fusion exemplifies the challenges in dissecting the complexity of a cellular reaction, but also demonstrates the powerful insights obtained from reconstitution of these processes.GEFs determine the localization of the corresponding Rab, and consequently, Rabs follow their GEF if they are mistargeted (Gerondopoulos et al., 2012; Blümer et al., 2013; Cabrera and Ungermann, 2013). However, these anchor-away approaches completely bypass the tight cellular regulation of GEF activation by the mistargeting and additional overexpression of the GEF protein and may allow only statements about GEF/substrate specificity. The spatiotemporal activation of each GEF at the right organelle is vital for the timing of all downstream reactions. GEFs are recruited to membranes by coincidence detection, which includes membrane lipids such as PIPs, membrane packaging defects, and peripheral membrane proteins such as upstream Rabs or other small GTPases. This recruitment is often accompanied by the release from autoinhibition, which may be triggered or inhibited by other regulatory processes such as phosphorylation. It comes as no surprise that pathogens such as Legionella and Salmonella take advantage of the central function of GEFs to establish and nourish their intracellular organellar niche by manipulating small GTPase activity (Spanò and Galán, 2018).To understand the specificity of Rab GEFs (and GAPs), mostly very simplified systems were used. Most GEF assays analyze soluble Rabs loaded with fluorescent 2′-O-(N-methylanthraniloyl) (MANT)-nucleotide or radioactively labeled GTP/GDP and soluble GEF in a test tube, where nucleotide exchange activity is observed upon addition of unlabeled nucleotide (Fig. 4 A). This strategy allows the identification of substrate (Rab) specificity of GEFs, but could also lead to misleading results, as pointed out earlier on the example of the TRAPP complexes and Rab1/Ypt1 or Rab11/Ypt32. In addition, GEF-Rab pairs negatively regulated by one of the above principles could easily be missed.Open in a separate windowFigure 4.Approaches to determine GEF activity in vitro. Methods to determine GEF activity for Mon1-Ccz1. In all approaches, Rab7 is preloaded with fluorescent MANT-GDP. Fluorescence decreases upon GEF-mediated nucleotide exchange. (A) GEF assays. (Ai) In-solution Rab GEF assay. Mon1-Ccz1 (blue, Bulli/Rmc1/C18orf8 subunit, indicated by unlabeled hexagon) and Rab7 (gray) are freely diffusible in the test tube, which results in random collision and Rab activation. (Aii) GEF-mediated activation of artificially recruited Rab7 on liposomes. Rab7 with a C-terminal 6xHis-tag is permanently immobilized on membranes containing the cationic lipid DOGS-NTA. Mon1-Ccz1 unspecifically binds to this membrane surface and activates Rab7. Diffusion is limited to the membrane surface, thus increasing chances of interactions. (Aiii) Reconstitution of Rab5-mediated Rab7 activation by Mon1-Ccz1 on liposomes. Chemically activated, prenylated Rab5 (green), delivered to the membrane by the Rab Escort Protein (REP), allows Mon1-Ccz1 recruitment and Rab7 activation from the GDI complex (see text for further details). (B) Summary of Ai–Aiii. pren., prenylation.As Rabs and GEFs function on membranes, we and others adopted strategies for measuring Rab activation by GEFs on membranes (Fig. 4 B). In a first approach, Rab and other small GTPases (Sot et al., 2013; Schmitt et al., 1994) were immobilized with C-terminal hexahistidine tags on liposomes containing the polycationic lipid 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (DOGS-NTA) and observed higher activity of the added GEF (Cabrera et al., 2014; Thomas and Fromme, 2016). A drawback of this technique is the artificial membrane composition. To avoid potential artifacts of unnaturally charged membranes and permanently membrane-bound Rab, recent studies relied on prenylated Rabs in complex with GDI. Reflecting the natural source of the cytoplasmic Rab pool, this complex was used as a GEF substrate in the presence of liposomes mimicking the natural membrane composition (Cezanne et al., 2020; Bezeljak et al., 2020; Langemeyer et al., 2020, 2018b; Thomas et al., 2018, 2019; Thomas and Fromme, 2016).Even though these observations are recent, the outcome and the understanding of GEF regulation is encouraging. For the Rab5 GEF complex consisting of Rabex5 and Rabaptin5, GEF-dependent Rab5 recruitment to membranes revealed a self-organizing system, nonlinear Rab5 patterning, and collective switching of the Rab5 population (Bezeljak et al., 2020; Cezanne et al., 2020). This is in agreement with mathematical modeling and predictions on bistability and ultrasensitivity of Rab networks (Del Conte-Zerial et al., 2008; Barr, 2013). For the Golgi-resident TRAPPII and TRAPPIII complexes, the membrane composition, the length of the Rab HVD, and the presence of membrane-bound Arf1 determined the GEF specificity for their Rabs (Fig. 3 F; Thomas et al., 2019, 2018; Thomas and Fromme, 2016; Riedel et al., 2018), which is nicely supported by recent structural analyses of yeast and metazoan TRAPPIII (Galindo et al., 2021; Joiner et al., 2021)Our own data uncovered that the yeast and metazoan Mon1-Ccz1(-RMC1) complex required membrane-bound Rab5-GTP to activate Rab7 out of the GDI complex (Langemeyer et al., 2020). Surprisingly, Rab5-GTP not only determined membrane binding of Mon1-Ccz1, but also activated the GEF on membranes by a yet-unknown mechanism (Fig. 1 C). Phosphorylation of yeast Mon1-Ccz1 by the casein kinase Yck3 inhibited this activation, demonstrating possible regulation of GEF activity (Fig. 3 C). Importantly, this finding agrees with the observed Rab5-to-Rab7 switch in vivo (Poteryaev et al., 2010; Rink et al., 2005).Taken together, the available tools open exciting avenues for our understanding of organelle maturation. Reconstitution will allow the investigation of an entire Rab cascade and its regulation by kinases or membrane lipids. It will be possible to determine the cross-talk with lipid kinases and observe possible regulatory loops between Rabs and PI kinases (Tremel et al., 2021). We are confident that such analyses, complemented by in vivo analyses of Rabs or other small GTPases and their GEFs, will clarify the underlying mechanism of organelle maturation and biogenesis along the endomembrane system of eukaryotic cells.  相似文献   

7.
ATG8ylation of proteins: A way to cope with cell stress?     
Julian M. Carosi  Thanh N. Nguyen  Michael Lazarou  Sharad Kumar  Timothy J. Sargeant 《The Journal of cell biology》2021,220(11)
The ATG8 family of proteins regulates autophagy in a variety of ways. Recently, ATG8s were demonstrated to conjugate directly to cellular proteins in a process termed “ATG8ylation,” which is amplified by mitochondrial damage and antagonized by ATG4 proteases. ATG8s may have an emerging role as small protein modifiers.

ATG8 proteins directly conjugate to cellular proteinsAutophagy describes the capture of intracellular material by autophagosomes and their delivery to lysosomes for destruction (Kaur and Debnath, 2015). This process homeostatically remodels the intracellular environment and is necessary for an organism to overcome starvation (Kaur and Debnath, 2015). The autophagy pathway is coordinated by autophagy-related (ATG) proteins that are controlled by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, and lipidation; Ichimura et al., 2000; McEwan and Dikic, 2011). Recently, a previously uncharacterized post-translational modification termed “ATG8ylation” was uncovered (Agrotis et al., 2019; Nguyen et al., 2021). ATG8ylation is the direct covalent attachment of the small ubiquitin-like family of ATG8 proteins to cellular proteins (Agrotis et al., 2019; Nguyen et al., 2021). Until now, the only known instances of ATG8 conjugation to proteins were of a transient nature, as E1- and E2-like intermediates with ATG7 and ATG3, respectively, as a way of ligating ATG8 to the lipid phosphatidylethanolamine during autophagy (Ichimura et al., 2000). Therefore, ATG8ylation may represent an underappreciated regulatory mechanism for many cellular proteins that coordinate pathways such as mitophagy.ATG8s play many roles in the autophagy pathwayDuring canonical autophagy, the ATG8 family (comprising LC3A, -B, and -C and GABARAP, -L1, and -L2) undergoes molecular processing that concludes with their attachment to phosphatidylethanolamine, enabling proper construction of autophagosomes and subsequent autophagosome–lysosome fusion (Nguyen et al., 2016). The ATG4 family of cysteine proteases (ATG4A, -B, -C, and -D) cleaves ATG8 proteins immediately after a conserved glycine residue in their C terminus in a process dubbed “priming,” which leads to the formation of ATG8-I (Skytte Rasmussen et al., 2017; Tanida et al., 2004). ATG7 then attaches to the exposed glycine residue of ATG8-I via a thioester linkage to form an E1 ubiquitin-like complex that transfers ATG8-I to ATG3 in a similar way to generate an E2-like complex (Ichimura et al., 2000). The ATG5–ATG12–ATG16L1 complex then catalyzes the E3-like transfer of ATG8-I from ATG3 to phosphatidylethanolamine to form ATG8-II, which is the lipidated species that is incorporated into double membrane–bound compartments such as autophagosomes (Hanada et al., 2007). The lipidation of ATG8s and their recruitment to the phagophore are not essential for the formation of autophagosomes but are important for phagophore expansion, the selective capture of autophagic substrates, and autophagosome–lysosome fusion (Kirkin and Rogov, 2019; Nguyen et al., 2016). Intriguingly, ATG8 lipidation is multifaceted, as ATG8s can be alternatively lipidated with phosphatidylserine (instead of phosphatidylethanolamine) to enable their recruitment to single membrane–bound compartments during LC3-associated phagocytosis, influenza infection, and lysosomal dysfunction (Durgan et al., 2021).The discovery of ATG8ylationKey insights into ATG8ylation came from the observation that various ATG8s form high-molecular-weight species in cells following the expression of their primed forms that have their C-terminal glycine exposed (for example, LC3B-G), bypassing the need for cleavage by ATG4 (Agrotis et al., 2019; Nguyen et al., 2021). Indeed, on an immunoblot, ATG8+ “smears” resemble that of ubiquitinated proteins (Agrotis et al., 2019; Nguyen et al., 2021). Traditionally, in the autophagy field, ATG8+ smears were thought to arise from poor antibody specificity. However, in light of recent findings, this widely accepted interpretation has been challenged, given that ATG8+ smears are enriched following ATG8 overexpression and disappear in the absence of ATG8s (Agrotis et al., 2019; Nguyen et al., 2021). Smearing has also been detected after immunoprecipitation of epitope-tagged ATG8s from cell extracts under denaturing conditions, ruling out noncovalent interactions accounting for this upshift (Agrotis et al., 2019; Nguyen et al., 2021). Further, smearing is not abolished by deubiquitinase treatment, arguing strongly against ATG8 ubiquitination as the cause (Nguyen et al., 2021). Everything considered, the most plausible explanation is that ATG8 itself undergoes covalent linkage to cellular proteins, akin to ubiquitin and NEDD8 modifiers, which are structurally similar to ATG8s. Remarkably, the protease ATG4 antagonizes the ATG8ylation state of many proteins (Agrotis et al., 2019; Nguyen et al., 2021).ATG4 displays isoform-specific proteolytic cleavage of ATG8ATG4 is required for the formation of autophagosomes, but its protease activity is not (Nguyen et al., 2021). The protease activity of ATG4 is, however, required for ATG8 processing, such as priming ahead of lipidation and de-lipidation, which removes excess ATG8 from autophagosomes and other membranes (Nguyen et al., 2021; Tanida et al., 2004; Fig. 1 A). Apart from these functions, ATG4 regulates the deubiquitinase-like removal of ATG8 from cellular proteins (de-ATG8ylation; Agrotis et al., 2019; Nguyen et al., 2021; Fig. 1 A). Consistent with this role, deletion of all four ATG4 isoforms (A, B, C, and D) increases the abundance of ATG8ylated proteins (Nguyen et al., 2021). In contrast, overexpression of ATG4B has the opposite effect, but only if its protease activity is intact (Agrotis et al., 2019). As such, ATG4 inhibits the ATG8ylation state of many proteins, which is likely to modulate their downstream functions.Open in a separate windowFigure 1.The many roles of ATG4 in ATG8 processing. (A) Molecular processing of ATG8 proteins by ATG4 illustrating its roles in priming, de-lipidation, and de-ATG8ylation. The structure of LC3B (Protein Data Bank accession no. 1V49) was used to denote ATG8 (G, glycine; PE, phosphatidylethanolamine). (B) Heatmap summarizing relationships between ATG4 isoforms and ATG8 family members. Data were summarized for qualitative interpretation (Agrotis et al., 2019; Li et al., 2011; Nguyen et al., 2021). Int., intermediate; N.d., not determined. (C) Graphical summary of questions moving forward with ATG8ylation (P, phosphorylation).ATG4 is an important “gatekeeper” for ATG8 conjugation events. ATG4 primes ATG8s to expose their C-terminal glycine, which is required for conjugation to proteins or lipids; however, ATG4 also catalyzes de-ATG8ylation and de-lipidation events, respectively (Agrotis et al., 2019; Nguyen et al., 2021; Tanida et al., 2004). Because the C-terminal glycine of a single ATG8 is occupied when conjugated to a protein or lipid, it is unlikely that ATG8ylated proteins directly engage with phagophore membranes in the same way as ATG8-II. Indeed, protease protection assays with recombinant ATG4B reveal that de-ATG8ylation of cell lysates remains unchanged with or without organellar membrane disruption, suggesting that ATG8ylated proteins are largely cytoplasmic facing rather than intraluminal (Agrotis et al., 2019). Paradoxically, however, ATG8ylation is enhanced by lysosomal V-type ATPase inhibition, which blocks the degradation of lysosomal contents, indicating that ATG8ylated substrates may undergo lysosome-dependent turnover (Agrotis et al., 2019; Nguyen et al., 2021). One explanation for these differences may be that the process of ATG8ylation is itself sensitive to lysosomal dysfunction.Functional relationships between ATG4s and ATG8sIsoforms of ATG4 show clear preferences for proteolytically processing ATG8 subfamilies (i.e., LC3s and GABARAPs) for de-ATG8ylation and priming upstream of phosphatidylethanolamine ligation (Agrotis et al., 2019; Li et al., 2011; Nguyen et al., 2021; Fig. 1 B). ATG4A strongly reduces the abundance of proteins that have been ATG8ylated with the GABARAP family while promoting ligation of GABARAPs to phosphatidylethanolamine (Agrotis et al., 2019; Nguyen et al., 2021; Fig. 1 B). In contrast, ATG4B strongly reduces the abundance of proteins that have been ATG8ylated with LC3 proteins while promoting ligation of LC3s to phosphatidylethanolamine (Agrotis et al., 2019; Nguyen et al., 2021; Fig. 1 B). In comparison, ATG4C and -D lack obvious de-ATG8ylation activity, although the latter weakly promotes phosphatidylethanolamine ligation to GABARAPL1 only (Nguyen et al., 2021). These functional similarities between ATG4 isoforms are consistent with both their sequence and structural homology (i.e., ATG4A and -B are most similar; Maruyama and Noda, 2018; Satoo et al., 2009). Structurally, ATG4B adopts an auto-inhibited conformation with its regulatory loop and N-terminal tail blocking substrate entry to its proteolytic core (Maruyama and Noda, 2018). LC3B induces conformational rearrangements in ATG4B that involve displacement of its regulatory loop and its N-terminal tail, with the latter achieved by an interaction between the ATG8-interacting region in its N-terminal tail with a second copy of LC3B that functions allosterically (Maruyama and Noda, 2018; Satoo et al., 2009). These rearrangements permit entry of LC3B into the proteolytic core of ATG4B, where cleavage of LC3B following its C-terminal glycine occurs (Li et al., 2011; Maruyama and Noda, 2018). ATG4BL232 is directly involved in LC3B binding and its selectivity for LC3s (Satoo et al., 2009). This residue corresponds to ATG4AI233 and, when substituted for leucine, gives ATG4AI233L the ability to efficiently process LC3 proteins, whereas without this mutation it preferentially processes GABARAPs (Satoo et al., 2009). Moreover, the ATG8–ATG4 interaction is necessary for the de-ATG8ylation of cellular proteins, as an LC3B-GQ116P mutant that cannot bind to ATG4 leads to widespread ATG8ylation (Agrotis et al., 2019). Altogether, these observations hint toward a common mechanism of ATG8 cleavage that regulates priming, de-lipidation, and de-ATG8ylation.Mitochondrial damage promotes ATG8ylationATG8ylation of cellular proteins appears to be enhanced by mitochondrial depolarization and inhibition of the lysosomal V-type ATPase (Agrotis et al., 2019; Nguyen et al., 2021). This may be the consequence of acute ATG4A and -B inhibition, given that cells lacking all ATG4 isoforms display an increased abundance of ATG8ylated proteins and are insensitive to further increase by mitochondrial depolarization or lysosomal V-type ATPase inhibition (Agrotis et al., 2019; Nguyen et al., 2021). Indeed, mitochondrial depolarization leads to activation of ULK1, which phosphorylates ATG4BS316 to inhibit its protease activity (Pengo et al., 2017). Similarly, mitochondrial depolarization stimulates TBK1 activation, which prevents de-lipidation of ATG8s by blocking the ATG8–ATG4 interaction through phosphorylation of LC3CS93/S96 and GABARAP-L2S87/S88 (Herhaus et al., 2020; Richter et al., 2016). As such, ATG8 phosphorylation may render ATG8ylated substrates more resistant to de-ATG8ylation by ATG4s. This may be analogous to how chains of phosphorylated ubiquitinS65 are more resistant to hydrolysis by deubiquitinating enzymes than unphosphorylated ones (Wauer et al., 2015). Moreover, ATG8ylation is insensitive to nutrient deprivation and pharmacological inhibition of mTOR, which rules out a functional contribution of this process to starvation-induced autophagy (Agrotis et al., 2019). Therefore, ATG8ylation may be a unique aspect of mitophagy (and perhaps also other forms of selective autophagy) given that depolarization potently activates Parkin-dependent mitophagy (Agrotis et al., 2019; Nguyen et al., 2021).Substrates of ATG8ylationBased on ATG8+ smearing, ATG4 regulates the de-ATG8ylation of numerous proteins (Agrotis et al., 2019; Nguyen et al., 2021). For the majority, their identity, induced structural and functional changes, and the cellular contexts during which these modifications occur await exploration. Considering that the ATG8 interactome is well characterized, it is likely that at least some ATG8ylated proteins have been mistaken for ATG8-binding partners (Behrends et al., 2010). Given their E2- and E3-like roles in ATG8 lipidation, it is remarkable that ATG3 and ATG16L1 are themselves modified by ATG8ylation (Agrotis et al., 2019; Hanada et al., 2007; Ichimura et al., 2000; Nguyen et al., 2021). Lysine mutagenesis indicates that ATG3K243 is the “acceptor” site for ATG8ylation (Agrotis et al., 2019). ATG3K243 is essential for its conjugation to either LC3B or ATG12 and is required for autophagosomes to form around damaged mitochondria (Agrotis et al., 2019; Radoshevich et al., 2010). This also raises the possibility that key functions originally attributed to ATG3–ATG12 conjugation may be, at least in part, due to ATG3–ATG8 conjugation. Because multiple high-molecular-weight species of ATG3 are enriched following immunoprecipitation of primed LC3B-G from cells lacking ATG4B, it is likely that ATG3 is either mono-ATG8ylated at several sites or poly-ATG8ylated (Agrotis et al., 2019). ATG8ylation of ATG3 may also reflect the stabilization of its E2-like intermediate (Ichimura et al., 2000). ATG8ylation of ATG16L1 may regulate whether canonical or noncanonical autophagy pathways are activated (Durgan et al., 2021; Nguyen et al., 2021). In line with this possibility, the WD40 domain mutant of ATG16L1K490A prevents lipidation of ATG8s with phosphatidylserine (i.e., during noncanonical autophagy pathways) but not phosphatidylethanolamine (i.e., during canonical autophagy; Durgan et al., 2021). Moreover, given that ATG8ylation of protein targets correlates with the activation of mitophagy, it is tempting to speculate that it may stimulate the E2-/E3-like activity of the ATG8 conjugation machinery to amplify mitochondrial capture and destruction.Concluding remarksThe finding that numerous cellular proteins are modified by ATG8ylation poses several questions about how signaling networks are coordinated during selective autophagy (i.e., mitophagy). Whether ATG8ylation is augmented by mitochondrial injury per se or is the consequence of mitophagy activation is yet to be determined, as is whether this phenomenon occurs during other types of selective autophagy (e.g., ER-phagy, ribophagy, and lysophagy; Kirkin and Rogov, 2019; Fig. 1 C). While the in vivo relevance of ATG8ylation is not yet understood, it is plausible that this process could be altered in diseases with defective mitophagy (e.g., Parkinson’s disease and atherosclerosis). Exploring the mechanistic aspects of ATG8ylation (e.g., ATG8 ligases and regulatory proteins, linkage types, acceptor sites, etc.) and de-ATG8ylation by ATG4 will improve our understanding about how this modifier alters the structure and biological function of cellular proteins (Fig. 1 C). By identifying ATG8ylated substrates, or the ATG8ylome, insights into whether ATG8ylation is a ubiquitous epiphenomenon or a post-translational modification that is selective to proteins of distinct biological function(s) will become clearer (Fig. 1 C). Considering the similarity of ATG8s with bona fide modifier proteins (e.g., ubiquitin and ubiquitin-like proteins) and the diversity of their substrates (e.g., lipid species and proteins), only now are we beginning to understand the functional complexities of the ATG8 protein family.  相似文献   

8.
Focus Issue on Roots: The anthocyanin reduced Tomato Mutant Demonstrates the Role of Flavonols in Tomato Lateral Root and Root Hair Development     
Gregory S. Maloney  Kathleen T. DiNapoli  Gloria K. Muday 《Plant physiology》2014,166(2):614-631
  相似文献   

9.
Characterization of the Possible Roles for B Class MADS Box Genes in Regulation of Perianth Formation in Orchid     
Yu-Yun Chang  Nai-Hsuan Kao  Jen-Ying Li  Wei-Han Hsu  Yu-Ling Liang  Jia-Wei Wu  Chang-Hsien Yang 《Plant physiology》2010,152(2):837-853
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

10.
The tubulin code: Molecular components,readout mechanisms,and functions     
Carsten Janke 《The Journal of cell biology》2014,206(4):461-472
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.

Introduction

Microtubules are key elements of the eukaryotic cytoskeleton that dynamically assemble from heterodimers of α- and β-tubulin. The structure of microtubules, as well as the protein sequences of α- and β-tubulin, is highly conserved in evolution, and consequently, microtubules look alike in almost all species. Despite the high level of conservation, microtubules adapt to a large variety of cellular functions. This adaptation can be mediated by a large panel of microtubule-associated proteins (MAPs), including molecular motors, as well as by mechanisms that directly modify the microtubules, thus either changing their biophysical properties or attracting subsets of MAPs that convey specific functions to the modified microtubules. Two different mechanism can generate microtubule diversity: the expression of different α- and β-tubulin genes, referred to as tubulin isotypes, and the generation of posttranslational modifications (PTMs) on α- and β-tubulin (Figs. 1 and and2).2). Although known for several decades, deciphering how tubulin heterogeneity controls microtubule functions is still largely unchartered. This review summarizes the current advances in the field and discusses new concepts arising.Open in a separate windowFigure 1.Tubulin heterogeneity generated by PTMs. (A) Schematic representation of the distribution of different PTMs of tubulin on the α/β-tubulin dimer with respect to their position in the microtubule lattice. Acetylation (Ac), phosphorylation (P), and polyamination (Am) are found within the tubulin bodies that assemble into the microtubule lattice, whereas polyglutamylation, polyglycylation, detyrosination, and C-terminal deglutamylation take place within the C-terminal tubulin tails that project away from the lattice surface. The tubulin dimer represents TubA1A and TubB2B (Fig. 2), and modification sites for polyglutamylation and polyglycylation have been randomly chosen. (B) Chemical structure of the branched peptide formed by polyglutamylation and polyglycylation, using the γ-carboxyl groups of the modified glutamate residues as acceptor sites for the isopeptide bonds. Note that in the case of polyglutamylation, the elongation of the side chains generates classical peptide bonds (Redeker et al., 1991).Open in a separate windowFigure 2.Heterogeneity of C-terminal tails of tubulin isotypes and their PTMs. The amino acid sequences of all tubulin genes found in the human genome are indicated, starting at the last amino acid of the folded tubulin bodies. Amino acids are represented in single-letter codes and color coded according to their biochemical properties. Known sites for polyglutamylation are indicated (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992). Potential modification sites (all glutamate residues) are indicated. Known C-terminal truncation reactions of α/β-tubulin (tub) are indicated. The C-terminal tails of the yeast Saccharomyces cerevisiae are shown to illustrate the phylogenetic diversity of these domains.

Tubulin isotypes

The cloning of the first tubulin genes in the late 1970’s (Cleveland et al., 1978) revealed the existence of multiple genes coding for α- or β-tubulin (Ludueña and Banerjee, 2008) that generate subtle differences in their amino acid sequences, particularly in the C-terminal tails (Fig. 2). It was assumed that tubulin isotypes, as they were named, assemble into discrete microtubule species that carry out unique functions. This conclusion was reinforced by the observation that some isotypes are specifically expressed in specialized cells and tissues and that isotype expression changes during development (Lewis et al., 1985; Denoulet et al., 1986). These high expectations were mitigated by a subsequent study showing that all tubulin isotypes freely copolymerize into heterogeneous microtubules (Lewis et al., 1987). To date, only highly specialized microtubules, such as ciliary axonemes (Renthal et al., 1993; Raff et al., 2008), neuronal microtubules (Denoulet et al., 1986; Joshi and Cleveland, 1989), and microtubules of the marginal band of platelets (Wang et al., 1986; Schwer et al., 2001) are known to depend on some specific (β) tubulin isotypes, whereas the function of most other microtubules appears to be independent of their isotype composition.More recently, a large number of mutations in single tubulin isotypes have been linked to deleterious neurodevelopmental disorders (Keays et al., 2007; Fallet-Bianco et al., 2008; Tischfield et al., 2010; Cederquist et al., 2012; Niwa et al., 2013). Mutations of a single tubulin isotype could lead to an imbalance in the levels of tubulins as a result of a lack of incorporation of mutant isoforms into the microtubule lattice or to incorporation that perturbs the architecture or dynamics of the microtubules. The analysis of tubulin disease mutations is starting to reveal how subtle alterations of the microtubule cytoskeleton can lead to functional aberrations in cells and organisms and might provide novel insights into the roles of tubulin isotypes that have so far been considered redundant.

Tubulin PTMs

Tubulin is subject to a large range of PTMs (Fig. 1), from well-known ones, such as acetylation or phosphorylation, to others that have so far mostly been found on tubulin. Detyrosination/tyrosination, polyglutamylation, and polyglycylation, for instance, might have evolved to specifically regulate tubulin and microtubule functions, in particular in cilia and flagella, as their evolution is closely linked to these organelles. The strong link between those modifications and tubulin evolution has led to the perception that they are tubulin PTMs; however, apart from detyrosination/tyrosination, most of them have other substrates (Regnard et al., 2000; Xie et al., 2007; van Dijk et al., 2008; Rogowski et al., 2009).

Tubulin acetylation.

Tubulin acetylation was discovered on lysine 40 (K40; Fig. 1 A) of flagellar α-tubulin in Chlamydomonas reinhardtii (L’Hernault and Rosenbaum, 1985) and is generally enriched on stable microtubules in cells. Considering that K40 acetylation per se has no effect on the ultrastructure of microtubules (Howes et al., 2014), it is rather unlikely that it directly stabilizes microtubules. As a result of its localization at the inner face of microtubules (Soppina et al., 2012), K40 acetylation might rather affect the binding of microtubule inner proteins, a poorly characterized family of proteins (Nicastro et al., 2011; Linck et al., 2014). Functional experiments in cells have further suggested that K40 acetylation regulates intracellular transport by regulating the traffic of kinesin motors (Reed et al., 2006; Dompierre et al., 2007). These observations could so far not be confirmed by biophysical measurements in vitro (Walter et al., 2012; Kaul et al., 2014), suggesting that in cells, K40 acetylation might affect intracellular traffic by indirect mechanisms.Enzymes involved in K40 acetylation are HDAC6 (histone deacetylase family member 6; Hubbert et al., 2002) and Sirt2 (sirtuin type 2; North et al., 2003). Initial functional studies used overexpression, depletion, or chemical inhibition of these enzymes. These studies should be discussed with care, as both HDAC6 and Sirt2 deacetylate other substrates and have deacetylase-independent functions and chemical inhibition of HDAC6 is not entirely selective for this enzyme (Valenzuela-Fernández et al., 2008). In contrast, acetyl transferase α-Tat1 (or Mec-17; Akella et al., 2010; Shida et al., 2010) specifically acetylates α-tubulin K40 (Fig. 3), thus providing a more specific tool to investigate the functions of K40 acetylation. Knockout mice of α-Tat1 are completely void of K40-acetylated tubulin; however, they show only slight phenotypic aberrations, for instance, in their sperm flagellum (Kalebic et al., 2013). A more detailed analysis of α-Tat1 knockout mice demonstrated that absence of K40 acetylation leads to reduced contact inhibition in proliferating cells (Aguilar et al., 2014). In migrating cells, α-Tat1 is targeted to microtubules at the leading edge by clathrin-coated pits, resulting in locally restricted acetylation of those microtubules (Montagnac et al., 2013). A recent structural study of α-Tat1 demonstrated that the low catalytic rate of this enzyme, together with its localization inside the microtubules, caused acetylation to accumulate selectively in stable, long-lived microtubules (Szyk et al., 2014), thus explaining the link between this PTM and stable microtubules in cells. However, the direct cellular function of K40 acetylation on microtubules is still unclear.Open in a separate windowFigure 3.Enzymes involved in PTM of tubulin. Schematic representation of known enzymes (mammalian enzymes are shown) involved in the generation and removal of PTMs shown in Fig. 1. Note that some enzymes still remain unknown, and some modifications are irreversible. (*CCP5 preferentially removes branching points [Rogowski et al., 2010]; however, the enzyme can also hydrolyze linear glutamate chains [Berezniuk et al., 2013]).Recent discoveries have brought up the possibility that tubulin could be subject to multiple acetylation events. A whole-acetylome study identified >10 novel sites on α- and β-tubulin (Choudhary et al., 2009); however, none of these sites have been confirmed. Another acetylation event has been described at lysine 252 (K252) of β-tubulin. This modification is catalyzed by the acetyltransferase San (Fig. 3) and might regulate the assembly efficiency of microtubules as a result of its localization at the polymerization interface (Chu et al., 2011).

Tubulin detyrosination.

Most α-tubulin genes in different species encode a C-terminal tyrosine residue (Fig. 2; Valenzuela et al., 1981). This tyrosine can be enzymatically removed (Hallak et al., 1977) and religated (Fig. 3; Arce et al., 1975). Mapping of tyrosinated and detyrosinated microtubules in cells using specific antibodies (Gundersen et al., 1984; Geuens et al., 1986; Cambray-Deakin and Burgoyne, 1987a) revealed that subsets of interphase and mitotic spindle microtubules are detyrosinated (Gundersen and Bulinski, 1986). As detyrosination was mostly found on stable and long-lived microtubules, especially in neurons (Cambray-Deakin and Burgoyne, 1987b; Robson and Burgoyne, 1989; Brown et al., 1993), it was assumed that this modification promotes microtubule stability (Gundersen et al., 1987; Sherwin et al., 1987). Although a direct stabilization of the microtubule lattice was considered unlikely (Khawaja et al., 1988), it was found more recently that detyrosination protects cellular microtubules from the depolymerizing activity of kinesin-13–type motor proteins, such as KIF2 or MCAK, thus increasing their longevity (Peris et al., 2009; Sirajuddin et al., 2014).Besides kinesin-13 motors, plus end–tracking proteins with cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, such as CLIP170 or p150/glued, specifically interact with tyrosinated microtubules (Peris et al., 2006; Bieling et al., 2008) via this domain (Honnappa et al., 2006). In contrast, kinesin-1 moves preferentially on detyrosinated microtubules tracks in cells (Liao and Gundersen, 1998; Kreitzer et al., 1999; Konishi and Setou, 2009). The effect of detyrosination on kinesin-1 motor behavior was recently measured in vitro, and a small but significant increase in the landing rate and processivity of the motor has been found (Kaul et al., 2014). Such subtle changes in the motor behavior could, in conjunction with other factors, such as regulatory MAPs associated with cargo transport complexes (Barlan et al., 2013), lead to a preferential use of detyrosinated microtubules by kinesin-1 in cells.Despite the early biochemical characterization of a detyrosinating activity, the carboxypeptidase catalyzing detyrosination of α-tubulin has yet to be identified (Hallak et al., 1977; Argaraña et al., 1978, 1980). In contrast, the reverse enzyme, tubulin tyrosine ligase (TTL; Fig. 3; Raybin and Flavin, 1975; Deanin and Gordon, 1976; Argaraña et al., 1980), has been purified (Schröder et al., 1985) and cloned (Ersfeld et al., 1993). TTL modifies nonpolymerized tubulin dimers exclusively. This selectivity is determined by the binding interface between the TTL and tubulin dimers (Szyk et al., 2011, 2013; Prota et al., 2013). In contrast, the so far unidentified detyrosinase acts preferentially on polymerized microtubules (Kumar and Flavin, 1981; Arce and Barra, 1983), thus modifying a select population of microtubules within cells (Gundersen et al., 1987).In most organisms, only one unique gene for TTL exists. Consequently, TTL knockout mice show a huge accumulation of detyrosinated and particularly Δ2-tubulin (see next section). TTL knockout mice die before birth (Erck et al., 2005) with major developmental defects in the nervous system that might be related to aberrant neuronal differentiation (Marcos et al., 2009). TTL is strictly tubulin specific (Prota et al., 2013), indicating that all observed defects in TTL knockout mice are directly related to the deregulation of the microtubule cytoskeleton.

Δ2-tubulin and further C-terminal modification.

A biochemical study of brain tubulin revealed that ∼35% of α-tubulin cannot be retyrosinated (Paturle et al., 1989) because of the lack of the penultimate C-terminal glutamate residue of the primary protein sequence (Fig. 2; Paturle-Lafanechère et al., 1991). This so-called Δ2-tubulin (for two C-terminal amino acids missing) cannot undergo retyrosination as a result of structural constraints within TTL (Prota et al., 2013) and thus is considered an irreversible PTM.Δ2-tubulin accumulates in long-lived microtubules of differentiated neurons, axonemes of cilia and flagella, and also in cellular microtubules that have been artificially stabilized, for instance, with taxol (Paturle-Lafanechère et al., 1994). The generation of Δ2-tubulin requires previous detyrosination of α-tubulin; thus, the levels of this PTM are indirectly regulated by the detyrosination/retyrosination cycle. This mechanistic link is particularly apparent in the TTL knockout mice, which show massive accumulation of Δ2-tubulin in all tested tissues (Erck et al., 2005). Loss of TTL and the subsequent increase of Δ2-tubulin levels were also linked to tumor growth and might contribute to the aggressiveness of the tumors by an as-yet-unknown mechanism (Lafanechère et al., 1998; Mialhe et al., 2001). To date, no specific biochemical role of Δ2-tubulin has been determined; thus, one possibility is that the modification simply locks tubulin in the detyrosinated state.The enzymes responsible for Δ2-tubulin generation are members of a family of cytosolic carboxypeptidases (CCPs; Fig. 3; Kalinina et al., 2007; Rodriguez de la Vega et al., 2007), and most of them also remove polyglutamylation from tubulin (see next section; Rogowski et al., 2010). These enzymes are also able to generate Δ3-tubulin (Fig. 1 A; Berezniuk et al., 2012), indicating that further degradation of the tubulin C-terminal tails are possible; however, the functional significance of this event is unknown.

Polyglutamylation.

Polyglutamylation is a PTM that occurs when secondary glutamate side chains are formed on γ-carboxyl groups of glutamate residues in a protein (Fig. 1, A and B). The modification was first discovered on α- and β-tubulin from the brain (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992; Mary et al., 1994) as well as on axonemal tubulin from different species (Mary et al., 1996, 1997); however, it is not restricted to tubulin (Regnard et al., 2000; van Dijk et al., 2008). Using a glutamylation-specific antibody, GT335 (Wolff et al., 1992), it was observed that tubulin glutamylation increases during neuronal differentiation (Audebert et al., 1993, 1994) and that axonemes of cilia and flagella (Fouquet et al., 1994), as well as centrioles of mammalian centrosomes (Bobinnec et al., 1998), are extensively glutamylated.Enzymes catalyzing polyglutamylation belong to the TTL-like (TTLL) family (Regnard et al., 2003; Janke et al., 2005). In mammals, nine glutamylases exist, each of them showing intrinsic preferences for modifying either α- or β-tubulin as well as for initiating or elongating glutamate chains (Fig. 3; van Dijk et al., 2007). Two of the six well-characterized TTLL glutamylases also modify nontubulin substrates (van Dijk et al., 2008).Knockout or depletion of glutamylating enzymes in different model organisms revealed an evolutionarily conserved role of glutamylation in cilia and flagella. In motile cilia, glutamylation regulates beating behavior (Janke et al., 2005; Pathak et al., 2007; Ikegami et al., 2010) via the regulation of flagellar dynein motors (Kubo et al., 2010; Suryavanshi et al., 2010). Despite the expression of multiple glutamylases in ciliated cells and tissues, depletion or knockout of single enzymes often lead to ciliary defects, particularly in motile cilia (Ikegami et al., 2010; Vogel et al., 2010; Bosch Grau et al., 2013; Lee et al., 2013), suggesting essential and nonredundant regulatory functions of these enzymes in cilia.Despite the enrichment of polyglutamylation in neuronal microtubules (Audebert et al., 1993, 1994), knockout of TTLL1, the major polyglutamylase in brain (Janke et al., 2005), did not show obvious neuronal defects in mice (Ikegami et al., 2010; Vogel et al., 2010). This suggests a tolerance of neuronal microtubules to variations in polyglutamylation.Deglutamylases, the enzymes that reverse polyglutamylation, were identified within a novel family of CCPs (Kimura et al., 2010; Rogowski et al., 2010). So far, three out of six mammalian CCPs have been shown to cleave C-terminal glutamate residues, thus catalyzing both the reversal of polyglutamylation and the removal of gene-encoded glutamates from the C termini of proteins (Fig. 3). The hydrolysis of gene-encoded glutamate residues is not restricted to tubulin, in which it generates Δ2- and Δ3-tubulin, but has also been reported for other proteins such as myosin light chain kinase (Rusconi et al., 1997; Rogowski et al., 2010). One enzyme of the CCP family, CCP5, preferentially removes branching points generated by glutamylation, thus allowing the complete reversal of the polyglutamylation modification (Kimura et al., 2010; Rogowski et al., 2010). However, CCP5 can also hydrolyze C-terminal glutamate residues from linear peptide chains similar to other members of the CCP family (Berezniuk et al., 2013).CCP1 is mutated in a well-established mouse model for neurodegeneration, the pcd (Purkinje cell degeneration) mouse (Mullen et al., 1976; Greer and Shepherd, 1982; Fernandez-Gonzalez et al., 2002). The absence of a key deglutamylase leads to strong hyperglutamylation in brain regions that undergo degeneration, such as the cerebellum and the olfactory bulb (Rogowski et al., 2010). When glutamylation levels were rebalanced by depletion or knockout of the major brain polyglutamylase TTLL1 (Rogowski et al., 2010; Berezniuk et al., 2012), Purkinje cells survived. Although the molecular mechanisms of hyperglutamylation-induced degeneration remain to be elucidated, perturbation of neuronal transport, as well as changes in the dynamics and stability of microtubules, is expected to be induced by hyperglutamylation. Increased polyglutamylation levels have been shown to affect kinesin-1–mediated transport in cultured neurons (Maas et al., 2009), and the turnover of microtubules can also be regulated by polyglutamylation via the activation of microtubule-severing enzymes such as spastin (Lacroix et al., 2010).Subtle differences in polyglutamylation can be seen on diverse microtubules in different cell types. The functions of these modifications remain to be studied; however, its wide distribution strengthens the idea that it could be involved in fine-tuning a range of microtubule functions.

Polyglycylation.

Tubulin polyglycylation or glycylation, like polyglutamylation, generates side chains of glycine residues within the C-terminal tails of α- and β-tubulin (Fig. 1, A and B). The modification sites of glycylation are considered to be principally the same as for glutamylation, and indeed, both PTMs have been shown to be interdependent in cells (Rogowski et al., 2009; Wloga et al., 2009). Initially discovered on Paramecium tetraurelia tubulin (Redeker et al., 1994), glycylation has been extensively studied using two antibodies, TAP952 and AXO49 (Bressac et al., 1995; Levilliers et al., 1995; Bré et al., 1996). In contrast to polyglutamylation, glycylation is restricted to cilia and flagella in most organisms analyzed so far.Glycylating enzymes are also members of the TTLL family, and homologues of these enzymes have so far been found in all organisms with proven glycylation of ciliary axonemes (Rogowski et al., 2009; Wloga et al., 2009). In mammals, initiating (TTLL3 and TTLL8) and elongating (TTLL10) glycylases work together to generate polyglycylation (Fig. 3). In contrast, the two TTLL3 orthologues from Drosophila melanogaster can both initiate and elongate glycine side chains (Rogowski et al., 2009).In mice, motile ependymal cilia in brain ventricles acquire monoglycylation upon maturation, whereas polyglycylation is observed only after several weeks (Bosch Grau et al., 2013). Sperm flagella, in contrast, acquire long glycine chains much faster, suggesting that the extent of polyglycylation could correlate with the length of the axonemes (Rogowski et al., 2009). Depletion of glycylases in mice (ependymal cilia; Bosch Grau et al., 2013), zebrafish (Wloga et al., 2009; Pathak et al., 2011), Tetrahymena thermophila (Wloga et al., 2009), and D. melanogaster (Rogowski et al., 2009) consistently led to ciliary disassembly or severe ciliary defects. How glycylation regulates microtubule functions remains unknown; however, the observation that glycylation-depleted axonemes disassemble after initial assembly (Rogowski et al., 2009; Bosch Grau et al., 2013) suggests a role of this PTM in stabilizing axonemal microtubules. Strikingly, human TTLL10 is enzymatically inactive; thus, humans have lost the ability to elongate glycine side chains (Rogowski et al., 2009). This suggests that the elongation of the glycine side chains is not an essential aspect of the function of this otherwise critical tubulin PTM.

Other tubulin PTMs.

Several other PTMs have been found on tubulin. Early studies identified tubulin phosphorylation (Eipper, 1974; Gard and Kirschner, 1985; Díaz-Nido et al., 1990); however, no specific functions were found. The perhaps best-studied phosphorylation event on tubulin takes place at serine S172 of β-tubulin (Fig. 1 A), is catalyzed by the Cdk1 (Fig. 3), and might regulate microtubule dynamics during cell division (Fourest-Lieuvin et al., 2006; Caudron et al., 2010). Tubulin can be also modified by the spleen tyrosine kinase Syk (Fig. 3; Peters et al., 1996), which might play a role in immune cells (Faruki et al., 2000; Sulimenko et al., 2006) and cell division (Zyss et al., 2005; Sulimenko et al., 2006).Polyamination has recently been discovered on brain tubulin (Song et al., 2013), after having been overlooked for many years as a result of the low solubility of polyaminated tubulin. Among several glutamine residues of α- and β-tubulin that can be polyaminated, Q15 of β-tubulin is considered the primary modification site (Fig. 1 A). Polyamination is catalyzed by transglutaminases (Fig. 3), which modify free tubulin as well as microtubules in an irreversible manner, and most likely contribute to the stabilization of microtubules (Song et al., 2013).Tubulin was also reported to be palmitoylated (Caron, 1997; Ozols and Caron, 1997; Caron et al., 2001), ubiquitinated (Ren et al., 2003; Huang et al., 2009; Xu et al., 2010), glycosylated (Walgren et al., 2003; Ji et al., 2011), arginylated (Wong et al., 2007), methylated (Xiao et al., 2010), and sumoylated (Rosas-Acosta et al., 2005). These PTMs have mostly been reported without follow-up studies, and some of them are only found in specific cell types or organisms and/or under specific metabolic conditions. Further studies will be necessary to gain insights into their potential roles for the regulation of the microtubule cytoskeleton.

Current advances and future perspectives

The molecular heterogeneity of microtubules, generated by the expression of different tubulin isotypes and by the PTM of tubulin has fascinated the scientific community for ∼40 years. Although many important advances have been made in the past decade, the dissection of the molecular mechanisms and a comprehensive understanding of the biological functions of tubulin isotypes and PTMs will be a challenging field of research in the near future.

Direct measurements of the impact of tubulin heterogeneity.

The most direct and reliable type of experiments to determine the impact of tubulin heterogeneity on microtubule behavior are in vitro measurements with purified proteins. However, most biophysical work on microtubules has been performed with tubulin purified from bovine, ovine, or porcine brains, which can be obtained in large quantities and with a high degree of purity and activity (Vallee, 1986; Castoldi and Popov, 2003). Brain tubulin is a mixture of different tubulin isotypes and is heavily posttranslationally modified and thus inept for investigating the functions of tubulin heterogeneity (Denoulet et al., 1986; Cambray-Deakin and Burgoyne, 1987b; Paturle et al., 1989; Eddé et al., 1990). Thus, pure, recombinant tubulin will be essential to dissect the roles of different tubulin isoforms and PTMs.Attempts to produce recombinant, functional α- and β-tubulin in bacteria have failed so far (Yaffe et al., 1988), most likely because of the absence of the extensive tubulin-specific folding machinery (Yaffe et al., 1992; Gao et al., 1993; Tian et al., 1996; Vainberg et al., 1998) in prokaryotes. An alternative source of tubulin with less isotype heterogeneity and with almost no PTMs is endogenous tubulin from cell lines such as HeLa, which in the past has been purified using a range of biochemical procedures (Bulinski and Borisy, 1979; Weatherbee et al., 1980; Farrell, 1982; Newton et al., 2002; Fourest-Lieuvin, 2006). Such tubulin can be further modified with tubulin-modifying enzymes, such as polyglutamylases, either by expressing those enzymes in the cells before tubulin purification (Lacroix and Janke, 2011) or in vitro with purified enzymes (Vemu et al., 2014). Despite some technical limitations of these methods, HeLa tubulin modified in cells has been successfully used in an in vitro study on the role of polyglutamylation in microtubule severing (Lacroix et al., 2010).Naturally occurring variants of tubulin isotypes and PTMs can be purified from different organisms, organs, or cell types, but obviously, only some combinations of tubulin isotypes and PTMs can be obtained by this approach. The recent development of an affinity purification method using the microtubule-binding TOG (tumor overexpressed gene) domain of yeast Stu2p has brought a new twist to this approach, as it allows purifying small amounts of tubulin from any cell type or tissue (Widlund et al., 2012).The absence of tubulin heterogeneity in yeast has made budding and fission yeast potential expression systems for recombinant, PTM-free tubulin (Katsuki et al., 2009; Drummond et al., 2011; Johnson et al., 2011). However, the expression of mammalian tubulin in this system has remained impossible. This problem was then partially circumvented by expressing tubulin chimeras that consist of a yeast tubulin body fused to mammalian C-terminal tubulin tails, thus mimicking different tubulin isotypes (Sirajuddin et al., 2014). Moreover, detyrosination can be generated by deleting the key C-terminal residue from endogenous or chimeric α-tubulin (Badin-Larçon et al., 2004), and polyglutamylation is generated by chemically coupling glutamate side chains to specifically engineered tubulin chimeras (Sirajuddin et al., 2014). These approaches allowed the first direct measurements of the impact of tubulin isotypes and PTMs on the behavior of molecular motors in vitro (Sirajuddin et al., 2014) and the analysis of the effects of tubulin heterogeneity on microtubule behavior and interactions inside the yeast cell (Badin-Larçon et al., 2004; Aiken et al., 2014).Currently, the most promising development has been the successful purification of fully functional recombinant tubulin from the baculovirus expression system (Minoura et al., 2013). Using this system, defined α/β-tubulin dimers can be obtained using two different epitope tags on α- and β-tubulin, respectively. Although these epitope tags are essential for separating recombinant from the endogenous tubulin, they could also affect tubulin assembly or microtubule–MAP interactions. Thus, future developments should focus on eliminating these tags.Current efforts have brought the possibility of producing recombinant tubulin into reach. Further improvement and standardization of these methods will certainly provide a breakthrough in understanding the mechanisms by which tubulin heterogeneity contributes to microtubule functions.

Complexity of tubulin—understanding the regulatory principles.

The diversity of tubulin genes (isotypes) and the complexity of tubulin PTMs have led to the proposal of the term “tubulin code” (Verhey and Gaertig, 2007; Wehenkel and Janke, 2014), in analogy to the previously coined histone code (Jenuwein and Allis, 2001). Tubulin molecules consist of a highly structured and thus evolutionarily conserved tubulin body and the unstructured and less conserved C-terminal tails (Nogales et al., 1998). As PTMs and sequence variations within the tubulin body are expected to affect the conserved tubulin fold and therefore the properties of the microtubule lattice, they are not likely to be involved in generating the tubulin code. In contrast, modulations of the C-terminal tails could encode signals on the microtubule surface without perturbing basic microtubule functions and properties (Figs. 1 A and and4).4). Indeed, the highest degree of gene-encoded diversity (Fig. 2) and the highest density and complexity of PTMs (Fig. 1) are found within these tail domains.Open in a separate windowFigure 4.Molecular components of the tubulin code. Schematic representation of potential coding elements that could generate specific signals for the tubulin code. (A) The length of the C-terminal tails of different tubulin isotypes differ significantly (Fig. 2) and could have an impact on the interactions between microtubules and MAPs. (B) Tubulin C-terminal tails are rich in charged amino acid residues. The distribution of these residues and local densities of charges could influence the electrostatic interactions with the tails and the readers. (C) Although each glutamate residue within the C-terminal tails could be considered a potential modification site, only some sites have been found highly occupied in tubulin purifications from native sources. This indicates selectivity of the modification reactions, which can participate in the generation of specific modification patterns (see D). Modification sites might be distinguished by their neighboring amino acid residues, which could create specific modification epitopes. (D) As a result of the large number of modification sites and the variability of side chains, a large variety of modification patterns could be generated within a single C-terminal tail of tubulin. (E) Modification patterns as shown in D can be distinct between α- and β-tubulin. These modification patterns could be differentially distributed at the surface of the microtubule lattice, thus generating a higher-order patterning. Tub, tubulin. For color coding, see Fig. 2.Considering the number of tubulin isotypes plus all potential combinations of PTMs (e.g., each glutamate residue within the C-terminal tubulin tail could be modified by either polyglutamylation or polyglycylation, each of them generating side chains of different lengths; Fig. 4), the number of distinct signals generated by the potential tubulin code would be huge. However, as many of these potential signals represent chemical structures that are similar and might not be reliably distinguished by readout mechanisms, it is possible that the tubulin code generates probabilistic signals. In this scenario, biochemically similar modifications would have similar functional readouts, and marginal differences between those signals would only bias biological processes but not determine them. This stands in contrast to the concept of the histone code, in which precise patterns of different PTMs on the histone proteins encode distinct biological signals.The concept of probabilistic signaling is already inscribed in the machinery that generates the tubulin code. Polyglutamylases and polyglycylases from the TTLL family have preferential activities for either α- or β-tubulin and for generating different lengths of the branched glutamate or glycine chains. Although under conditions of low enzyme concentrations, as found in most cells and tissues, the enzymes seem to selectively generate their preferential type of PTM, higher enzyme concentrations induce a more promiscuous behavior, leading, for instance, to a loss of selectivity for α- or β-tubulin (van Dijk et al., 2007). Similarly, the modifying enzymes might prefer certain modification sites within the C-terminal tails of tubulin but might be equally able to modify other sites, which could be locally regulated in cells. For example, β-tubulin isotypes isolated from mammalian brain were initially found to be glutamylated on single residues (Alexander et al., 1991; Rüdiger et al., 1992), which in the light of the comparably low sensitivity of mass spectrometry at the time might rather indicate a preferential than a unique modification of these sites. Nevertheless, the neuron-specific polyglutamylase for β-tubulin TTLL7 (Ikegami et al., 2006) can incorporate glutamate onto many more modification sites of β-tubulin in vitro (Mukai et al., 2009), which clearly indicates that not all of the possible modification events take place under physiological conditions.Several examples supporting a probabilistic signaling mode of the tubulin code are found in the recent literature. In T. thermophila, a ciliate without tubulin isotype diversity (Gaertig et al., 1993) but with a huge repertoire of tubulin PTMs and tubulin-modifying enzymes (Janke et al., 2005), tubulin can be easily mutagenized to experimentally eliminate sites for PTMs. Mutagenesis of the most commonly occupied glutamylation/glycylation sites within the β-tubulin tails did not generate a clear decrease of glycylation levels nor did it cause obvious phenotypic alterations. This indicates that the modifying enzymes can deviate toward alternative modification sites and that similar PTMs on different sites can compensate the functions of the mutated site. However, when all of the key modification sites were mutated, glycylation became prominently decreased, which led to severe phenotypes, including lethality (Xia et al., 2000). Most strikingly, these phenotypes could be recovered by replacing the C-terminal tail of α-tubulin with the nonmutated β-tubulin tail. This α–β-tubulin chimera became overglycylated and functionally compensated for the absence of modification sites on β-tubulin. The conclusion of this study is that PTM- and isotype-generated signals can fulfill a biological function within a certain range of tolerance.But how efficient is such compensation? The answer can be found in a variety of already described deletion mutants for tubulin-modifying enzymes in different model organisms. Most single-gene knockouts for TTLL genes (glutamylases or glycylases) did not result in prominent phenotypic alterations in mice, even for enzymes that are ubiquitously expressed. Only some highly specialized microtubule structures show functional aberrations upon the deletion of a single enzyme. These “tips of the iceberg” are usually the motile cilia and sperm flagella, which carry very high levels of polyglutamylation and polyglycylation (Bré et al., 1996; Kann et al., 1998; Rogowski et al., 2009). It thus appears that some microtubules are essentially dependent on the generation of specific PTM patterns, whereas others can tolerate changes and appear to function normally. How “normal” these functions are remains to be investigated in future studies. It is possible that defects are subtle and thus overlooked but could become functionally important under specific conditions.A tubulin code also requires readout mechanisms. The most likely “readers” of the tubulin code are MAPs and molecular motors. Considering the probabilistic signaling hypothesis, the expected effects of the signals would be in most cases rather gradual changes, for instance, to fine-tune molecular motor traffic and/or to bias motors toward defined microtubule tracks but not to obliterate motor activity or MAP binding to microtubules. An in vitro study using recombinant tubulin chimeras purified from yeast confirmed this notion (Sirajuddin et al., 2014). By analyzing which elements of the tubulin code can regulate the velocity and processivity of the molecular motors kinesin and dynein, these researchers found that the C-terminal tails of α- and β-tubulin differentially influence the kinetic parameters of the tested motors; however, the modulation was rather modest. One of their striking observations was that a single lysine residue, present in the C-terminal tails of two β-tubulin isotypes (Figs. 2 and and4),4), significantly affected motor traffic and that this effect can be counterbalanced by polyglutamylation. These observations are the first in vitro evidence for the interdependence of different elements of the tubulin code and provide another indication for its probabilistic mode of signaling.

Future directions.

One of the greatest technological challenges to understanding the function of the tubulin code is to detect and interpret subtle and complex regulatory events generated by this code. It will thus be instrumental to further develop tools to better distinguish graded changes in PTM levels on microtubules in cells and tissues (Magiera and Janke, 2013) and to reliably measure subtle modulations of microtubule behavior in reconstituted systems.The current advances in the field and especially the availability of whole-organism models, as well as first insights into the pathological role of tubulin mutations (Tischfield et al., 2011), are about to transform our way of thinking about the regulation of microtubule cytoskeleton. Tubulin heterogeneity generates complex probabilistic signals that cannot be clearly attributed to single biological functions in most cases and that are not essential for most cellular processes. Nevertheless, it has been conserved throughout evolution of eukaryotes and can hardly be dismissed as not important. To understand the functional implications of these processes, we might be forced to reconsider how we define biologically important events and how we measure events that might encode probabilistic signals. The answers to these questions could provide novel insights into how complex systems, such as cells and organisms, are sustained throughout difficult and challenging life cycles, resist to environmental stress and diseases, and have the flexibility needed to succeed in evolution.  相似文献   

11.
A Single Arabidopsis Gene Encodes Two Differentially Targeted Geranylgeranyl Diphosphate Synthase Isoforms     
M. águila Ruiz-Sola  M. Victoria Barja  David Manzano  Briardo Llorente  Bert Schipper  Jules Beekwilder  Manuel Rodriguez-Concepcion 《Plant physiology》2016,172(3):1393-1402
  相似文献   

12.
COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family,Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells,     
Daniela Ben-Tov  Yael Abraham  Shira Stav  Kevin Thompson  Ann Loraine  Rivka Elbaum  Amancio de Souza  Markus Pauly  Joseph J. Kieber  Smadar Harpaz-Saad 《Plant physiology》2015,167(3):711-724
  相似文献   

13.
SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an Ortholog of OPEN STOMATA1, Is a Negative Regulator of Strawberry Fruit Development and Ripening     
Yu Han  Ruihong Dang  Jinxi Li  Jinzhu Jiang  Ning Zhang  Meiru Jia  Lingzhi Wei  Ziqiang Li  Bingbing Li  Wensuo Jia 《Plant physiology》2015,167(3):915-930
  相似文献   

14.
Herbivore-Induced SABATH Methyltransferases of Maize That Methylate Anthranilic Acid Using S-Adenosyl-l-Methionine     
Tobias G. K?llner  Claudia Lenk  Nan Zhao  Irmgard Seidl-Adams  Jonathan Gershenzon  Feng Chen  J?rg Degenhardt 《Plant physiology》2010,153(4):1795-1807
Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-l-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-l-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid.Volatile compounds have important roles in the reproduction and defense of plants. Volatiles can attract pollinators and seed dispersers (Dobson and Bergström, 2000; Knudsen et al., 2006) or function as indirect defense compounds that attract natural enemies of herbivores (Dicke, 1994; Degenhardt et al., 2003; Howe and Jander, 2008). A well-studied example for the role of volatiles in plant defense is the tritrophic interaction between maize (Zea mays) plants, their lepidopteran herbivores, and parasitoid wasps of the herbivores. After damage by larvae of Spodoptera species, maize releases a complex volatile blend containing different classes of natural products (Turlings et al., 1990; Turlings and Benrey, 1998a). This volatile blend can be used as a cue by parasitic wasps to find hosts for oviposition (Turlings et al., 1990, 2005). After parasitization, lepidopteran larvae feed less and die upon emergence of the adult wasp, resulting in a considerable reduction in damage to the plant (Hoballah et al., 2002, 2004). The composition of the maize volatile blend is complex, consisting of terpenoids and products of the lipoxygenase pathway, along with three aromatic compounds: indole, methyl anthranilate, and methyl salicylate (Turlings et al., 1990; Degen et al., 2004; Köllner et al., 2004a). In the last decade, several studies have addressed the biosynthesis of terpenoids (Shen et al., 2000; Schnee et al., 2002, 2006; Köllner et al., 2004b, 2008a, 2008b) and indole (Frey et al., 2000, 2004) in maize. The formation of methyl anthranilate and methyl salicylate, however, has not been elucidated.Methyl anthranilate and methyl salicylate are carboxyl methyl esters of anthranilic acid, an intermediate of Trp biosynthesis, and the plant hormone salicylic acid, respectively. Our understanding of methyl anthranilate biosynthesis in plants is very limited. The only enzyme that has been described to be involved in methyl anthranilate synthesis is the anthraniloyl-CoA:methanol acyltransferase in Washington Concord grape (Vitis vinifera; Wang and De Luca, 2005). In contrast, the biosynthesis of methyl salicylate has been well studied in several plant species, such as Clarkia brewerii (Ross et al., 1999), Arabidopsis (Arabidopsis thaliana; Chen et al., 2003), and rice (Oryza sativa; Xu et al., 2006; Koo et al., 2007; Zhao et al., 2010). In all these species, methyl salicylate is synthesized by the action of S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase (SAMT). The apparent homology of SAMTs from different plant species suggests that methyl salicylate formation in maize, a species closely related to rice, is also catalyzed by an SAMT. SAMT enzymes are considered part of a larger family of methyltransferases called SABATH methyltransferases (D''Auria et al., 2003). The SABATH family also includes methyltransferases producing other methyl esters such as methyl benzoate, methyl jasmonate, and methyl indole-3-acetate (Seo et al., 2001; Effmert et al., 2005; Qin et al., 2005; Song et al., 2005; Zhao et al., 2007). An activity forming methyl anthranilate has not been described in the SABATH family, despite the striking structural similarity between methyl anthranilate and methyl salicylate or methyl benzoate. Two different classes of enzymes, methanol acyl transferases and methyltransferases, therefore, might be responsible for methyl anthranilate biosynthesis in maize (Fig. 1). Some of the SABATH methyltransferases have been shown previously to have methyltransferase activity in vitro using anthranilic acid as substrate (Chen et al., 2003; Zhao et al., 2010), but the biological relevance of such activity is unknown.Open in a separate windowFigure 1.The biosynthesis of methyl anthranilate from anthranilic acid can proceed over two pathways. Pathway A has been documented in grape, while pathway B is demonstrated here. AMAT, Anthraniloyl-CoA:methanol acyltransferase; SAH, S-adenosyl-l-homocysteine.In our ongoing attempt to investigate the biosynthesis and function of maize volatiles, we have studied the biosynthesis of the aromatic methyl esters, methyl salicylate and methyl anthranilate, and their regulation by herbivory. Biochemical characterization of maize benzenoid carboxyl methyltransferases of the SABATH family led to the discovery of a group of anthranilic acid methyltransferases (AAMTs). Homology-based structural modeling combined with site-directed mutagenesis identified the residues critical for the binding of the anthranilic acid substrate. Such functionally important residues are responsible for the diversification and evolution of benzenoid carboxyl methyltransferases in plants.  相似文献   

15.
Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis     
Girdhar K. Pandey  Poonam Kanwar  Amarjeet Singh  Leonie Steinhorst  Amita Pandey  Akhlilesh K. Yadav  Indu Tokas  Sibaji K. Sanyal  Beom-Gi Kim  Sung-Chul Lee  Yong-Hwa Cheong  J?rg Kudla  Sheng Luan 《Plant physiology》2015,169(1):780-792
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

16.
The Apical Actin Fringe Contributes to Localized Cell Wall Deposition and Polarized Growth in the Lily Pollen Tube     
Caleb M. Rounds  Peter K. Hepler  Lawrence J. Winship 《Plant physiology》2014,166(1):139-151
In lily (Lilium formosanum) pollen tubes, pectin, a major component of the cell wall, is delivered through regulated exocytosis. The targeted transport and secretion of the pectin-containing vesicles may be controlled by the cortical actin fringe at the pollen tube apex. Here, we address the role of the actin fringe using three different inhibitors of growth: brefeldin A, latrunculin B, and potassium cyanide. Brefeldin A blocks membrane trafficking and inhibits exocytosis in pollen tubes; it also leads to the degradation of the actin fringe and the formation of an aggregate of filamentous actin at the base of the clear zone. Latrunculin B, which depolymerizes filamentous actin, markedly slows growth but allows focused pectin deposition to continue. Of note, the locus of deposition shifts frequently and correlates with changes in the direction of growth. Finally, potassium cyanide, an electron transport chain inhibitor, briefly stops growth while causing the actin fringe to completely disappear. Pectin deposition continues but lacks focus, instead being delivered in a wide arc across the pollen tube tip. These data support a model in which the actin fringe contributes to the focused secretion of pectin to the apical cell wall and, thus, to the polarized growth of the pollen tube.Pollen tubes provide an excellent model for studying the molecular and physiological processes that lead to polarized cell growth. Because all plant cell growth results from the regulated yielding of the cell wall in response to uniform turgor pressure (Winship et al., 2010; Rojas et al., 2011), the cell wall of the pollen tube must yield only at a particular spot: the cell apex, or tip. To accomplish the extraordinary growth rates seen in many species, and to balance the thinning of the apical wall due to rapid expansion, the pollen tube delivers prodigious amounts of wall material, largely methoxylated pectins, to the tip in a coordinated manner. Recent studies suggest that the targeted exocytosis increases the extensibility of the cell wall matrix at the tip, which then yields to the existing turgor pressure, permitting the tip to extend or grow (McKenna et al., 2009; Hepler et al., 2013). There are many factors that influence exocytosis in growing pollen tubes; in this study, we investigate the role of the apical actin fringe.For many years, it has been known that an actin structure exists near the pollen tube tip, yet its exact form has been a matter of some contention (Kost et al., 1998; Lovy-Wheeler et al., 2005; Wilsen et al., 2006; Cheung et al., 2008; Vidali et al., 2009; Qu et al., 2013). The apical actin structure has been variously described as a fringe, a basket, a collar, or a mesh. Using rapid freeze fixation of lily (Lilium formosanum) pollen tubes followed by staining with anti-actin antibodies, the structure appears as a dense fringe of longitudinally oriented microfilaments, beginning 1 to 5 µm behind the apex and extending 5 to 10 µm basally. The actin filaments are positioned in the cortical cytoplasm close to the plasma membrane (Lovy-Wheeler et al., 2005). More recently, we used Lifeact-mEGFP, a probe that consistently labels this palisade of longitudinally oriented microfilaments in living cells (Vidali et al., 2009; Fig. 1A, left column). For the purposes of this study, we will refer to this apical organization of actin as a fringe.Open in a separate windowFigure 1.The actin fringe and the thickened pollen tube tip wall are stable, although dynamic, structures during pollen tube growth. A, The left column shows a pollen tube transformed with Lifeact-mEGFP imaged with a spinning-disc confocal microscope. Maximal projections from every 15 s are shown. The right column shows epifluorescence images of a pollen tube stained with PI. Again, images captured every 15 s are shown. Bars = 10 μm. B, The data from the pollen tube in A expressing Lifeact-mEGFP were subjected to kymograph analysis using an 11-pixel strip along the image’s midline. C, The first three frames from the pollen tube in A and B were assigned the colors red, blue, and green, respectively, and then overlaid. Areas with white show the overlap of all three. The fringe is stable, but most of its constituent actin is not shared between frames.Many lines of evidence demonstrate that actin is required for pollen tube growth. Latrunculin B (LatB), which blocks actin polymerization, inhibits pollen tube growth and disrupts the cortical fringe at concentrations as low as 2 nm. Higher concentrations are needed to block pollen grain germination and cytoplasmic streaming (Gibbon et al., 1999; Vidali et al., 2001). Actin-binding proteins, including actin depolymerizing factor-cofilin, formin, profilin, and villin, and signaling proteins, such as Rho-of-Plants (ROP) GTPases and their effectors (ROP interacting crib-containing proteins [RICs]), also have been shown to play critical roles in growth and actin dynamics (Fu et al., 2001; Vidali et al., 2001; Allwood et al., 2002; Chen et al., 2002; Cheung and Wu, 2004; McKenna et al., 2004; Gu et al., 2005; Ye et al., 2009; Cheung et al., 2010; Staiger et al., 2010; Zhang et al., 2010a; Qu et al., 2013; van Gisbergen and Bezanilla, 2013).Our understanding of the process of exocytosis and pollen tube elongation has been influenced by ultrastructural images of pollen tube tips, which reveal an apical zone dense with vesicles (Cresti et al., 1987; Heslop-Harrison, 1987; Lancelle et al., 1987; Steer and Steer, 1989; Lancelle and Hepler, 1992; Derksen et al., 1995). It has long been assumed that these represent exocytotic vesicles destined to deliver new cell wall material. This model of polarized secretion has been challenged in recent years in studies using FM dyes. Two groups have suggested that exocytosis occurs in a circumpolar annular zone (Bove et al., 2008; Zonia and Munnik, 2008). However, other studies, using fluorescent beads attached to the cell surface, indicate that the maximal rate of expansion, and of necessity the greatest deposition of cell wall material, occurs at the apex along the polar axis of the tube (Dumais et al., 2006; Rojas et al., 2011). Similarly, our experiments with propidium iodide (PI; McKenna et al., 2009; Rounds et al., 2011a) and pectin methyl esterase fused to GFP (McKenna et al., 2009) show that the wall is thickest at the very tip and suggest that wall materials are deposited at the polar axis, consistent with the initial model of exocytosis (Lancelle and Hepler, 1992). Experiments using tobacco (Nicotiana tabacum) pollen and a receptor-like kinase fused to GFP also indicate that exocytosis occurs largely at the apical polar axis (Lee et al., 2008).Many researchers argue that apical actin is critical for exocytosis (Lee et al., 2008; Cheung et al., 2010; Qin and Yang, 2011; Yan and Yang, 2012). More specifically, recent work suggests that the fringe participates in targeting vesicles and thereby contributes to changes in growth direction (Kroeger et al., 2009; Bou Daher and Geitmann, 2011; Dong et al., 2012). In this article, using three different inhibitors, namely brefeldin A (BFA), LatB, and potassium cyanide (KCN), we test the hypothesis that polarized pectin deposition in pollen tubes requires the actin fringe. Our data show that during normal growth, pectin deposition is focused to the apex along the polar axis of the tube. However, when growth is modulated, different end points arise, depending on the inhibitor. With BFA, exocytosis stops completely, and the fringe disappears, with the appearance of an actin aggregate at the base of the clear zone. LatB, as shown previously (Vidali et al., 2009), incompletely degrades the actin fringe and leaves a rim of F-actin around the apical dome. Here, we show that, in the presence of LatB, pectin deposition continues, with the focus of this activity shifting in position frequently as the slowly elongating pollen tube changes direction. With KCN, the actin fringe degrades completely, but exocytosis continues and becomes depolarized, with pectin deposits now occurring across a wide arc of the apical dome. This dome often swells as deposition continues, only stopping once normal growth resumes. Taken together, these results support a role for the actin fringe in controlling the polarity of growth in the lily pollen tube.  相似文献   

17.
A guide to membrane atg8ylation and autophagy with reflections on immunity     
Vojo Deretic  Michael Lazarou 《The Journal of cell biology》2022,221(7)
  相似文献   

18.
Cell biology in neuroscience: Death of developing neurons: New insights and implications for connectivity     
Martijn P.J. Dekkers  Vassiliki Nikoletopoulou  Yves-Alain Barde 《The Journal of cell biology》2013,203(3):385-393
The concept that target tissues determine the survival of neurons has inspired much of the thinking on neuronal development in vertebrates, not least because it is supported by decades of research on nerve growth factor (NGF) in the peripheral nervous system (PNS). Recent discoveries now help to understand why only some developing neurons selectively depend on NGF. They also indicate that the survival of most neurons in the central nervous system (CNS) is not simply regulated by single growth factors like in the PNS. Additionally, components of the cell death machinery have begun to be recognized as regulators of selective axonal degeneration and synaptic function, thus playing a critical role in wiring up the nervous system.

Why do so many neurons die during development?

Programmed cell death occurs throughout life, as cell turnover is part of homeostasis and maintenance in most organs and tissues. The situation in the nervous system is principally different, as the vast majority of neurons undergo their last round of cell division early in development. Soon after exiting the cell cycle, neurons start elongating axons to innervate their targets. It is during this period that they are highly susceptible to undergo programmed cell death: a large percentage, as much as 50% in several ganglia in the peripheral nervous system (PNS) as well as in various central nervous system (CNS) areas, is eliminated around the time that connections are being made with other cells. Later in development, the propensity of neurons to initiate apoptosis progressively decreases. The likelihood for a neuron to undergo apoptosis seems to be determined by a tightly regulated apoptotic machinery (summarized in Fig. 1). Therefore, modulation of the expression levels or the activity of components of this apoptotic balance changes the sensitivity to death-promoting cues, allowing temporal restriction of cell death.Open in a separate windowFigure 1.Core components of the apoptotic machinery. The likelihood that a neuron undergoes apoptosis is determined by the interplay of the tightly interlinked apoptotic machinery, many components of which are highly conserved between species. The critical, and often terminal, step in programmed cell death is the proteolytic activation of the executor caspases (such as caspase 3, 6, 7) by the initiator caspases (i.e., caspase 8, 9, and 10; Riedl and Salvesen, 2007). In mammalian cells, initiation of the executor caspases is regulated by two distinct protein cascades: the intrinsic pathway, also known as the mitochondrial pathway, and the extrinsic pathway. The intrinsic pathway integrates a number of intra- and extracellular signal modalities, such as redox state (for example, the reactive oxygen species; Franklin, 2011), DNA damage (Sperka et al., 2012), ER stress (Puthalakath et al., 2007) and growth factor deprivation (Deckwerth et al., 1998; Putcha et al., 2003; Bredesen et al., 2005), or activation of the p75NTR neurotrophin receptor by pro-neurotrophins (Nykjaer et al., 2005). The stressors converge onto pro- and anti-apoptotic members of the Bcl-2 protein family (for example: BCL-2, BCL-Xl, BAX, and tBID; Youle and Strasser, 2008). These proteins regulate the release of cytochrome c from mitochondria, which activates the initiator caspase 9 through Apaf1 (Riedl and Salvesen, 2007). The extrinsic pathway links activation of ligand-bound death receptors (such as Fas/CD95 and TNFR) to the initiator caspase 8 and 10, through formation of the death-inducing signaling complex (DISC; LeBlanc and Ashkenazi, 2003; Peter and Krammer, 2003). Together with additional regulatory elements (including the Inhibitors of apoptosis proteins [IAP]; Vaux and Silke, 2005) and cFLIP (Scaffidi et al., 1999; Wang et al., 2005), the apoptotic machinery forms a balance that determines the propensity of the neuron to undergo apoptosis.Programmed cell death eliminates many neurons during development, even in organisms comprised of only few cells, such as Caenorhabditis elegans. As neurons and their targets are initially separated, it is possible that the initial generation of an overabundance of neurons is simply part of a mechanism to ensure that distal targets are adequately innervated (Oppenheim, 1991; Conradt, 2009; Chen et al., 2013). In various tissues other than the nervous system, programmed cell death is used to eliminate cells that are no longer needed, defective, or harmful to the function of the organism. However, there is strong evidence that the elimination of superfluous neurons in the developing nervous system is not essential. For example, early work in C. elegans revealed that preventing programmed cell death does not result in significant behavioral alterations (Ellis and Horvitz, 1986). In the C57BL/6 mouse strain, deletion of the executor caspases 3 and 7 (Fig. 1) has a remarkably limited neuropathological and morphological impact in the CNS (Leonard et al., 2002; Lakhani et al., 2006) compared with the 129X1/SvJ strain, in which deletion of these caspases causes neurodevelopmental defects (Leonard et al., 2002). Similar conclusions were reached by blocking the Bcl-2–associated X protein (BAX)–dependent pathway in many neuronal populations, including motoneurons (Buss et al., 2006a). A recent study in the developing retina showed that in mice lacking the central apoptotic regulator BAX, the normal mosaic distribution of intrinsically photosensitive retinal ganglion cells (ipRGCs) was perturbed (Chen et al., 2013). Although this abnormal distribution is dispensable for the intrinsic photosensitivity of the ipRGCs, it is required for establishing proper connections to other neurons in the retina, which is necessary for rod/cone photo-entrainment (Chen et al., 2013). Even though this finding highlights a physiological role for programmed cell death in the CNS, the functional consequences remain rather underwhelming in the face of a process that eliminates such large numbers of neurons (Purves and Lichtman, 1984; Oppenheim, 1991; Miller, 1995; Gohlke et al., 2004). It thus appears that apoptotic removal of the surplus neurons generated during development mainly serves the purpose to optimize the size of the nervous system to be minimal, but sufficient.

A molecular substrate for the neurotrophic theory

Quantitatively, programmed cell death of neurons in the PNS and CNS is most dramatic when neurons start contacting the cells they innervate. Because experimental manipulations such as target excision typically lead to the death of essentially all innervating neurons (Oppenheim, 1991), the concept emerged that the fate of developing neurons is regulated by their targets. This notion is often referred to as the “neurotrophic theory” (Hamburger et al., 1981; Purves and Lichtman, 1984; Oppenheim, 1991), but it is important to realize that it evolved in the absence of direct mechanistic or molecular support (Purves, 1988). Originally described as a diffusible agent promoting nerve growth, the eponymous NGF later provided a strong and very appealing molecular foundation for this theory (Korsching and Thoenen, 1983; Edwards et al., 1989; Hamburger, 1992). The tyrosine kinase receptor tropomyosin receptor kinase A (TrkA), which was initially identified as an oncogene (Martin-Zanca et al., 1986), was fortuitously discovered to be the critical receptor necessary for the prevention of neuronal cell death by NGF (Klein et al., 1991). Both the remarkable expression pattern of TrkA in NGF-dependent neurons and the onset of its expression during development (Martin-Zanca et al., 1990) provided further additional support for the neurotrophic theory. However, for a surprisingly long time, the question was not asked as to why only specific populations of neurons strictly depend on NGF for survival, while others do not. Indeed, it was only recently shown that TrkA causes cell death of neurons by virtue of its mere expression, and that this death-inducing activity is prevented by addition of NGF (Nikoletopoulou et al., 2010). These findings thus indicate that TrkA acts as a “dependence receptor,” a concept introduced after observations that various cell types die when receptors are expressed in the absence of their cognate ligands (Bredesen et al., 2005; Tauszig-Delamasure et al., 2007). Accordingly, embryonic mouse sympathetic or sensory neurons survive in the absence of NGF when TrkA is deleted (Nikoletopoulou et al., 2010). The closely related neurotrophin receptor TrkC also acts as a dependence receptor (Tauszig-Delamasure et al., 2007; Nikoletopoulou et al., 2010). Here, it is interesting to note a series of older, convergent results indicating that deletion of neurotrophin-3 (NT3), the TrkC ligand, leads to a significantly larger loss of sensory and sympathetic neurons in the PNS than the deletion of TrkC (Tessarollo et al., 1997). This phenotypic discrepancy fits well with the idea that inactivation of the ligand of a dependence receptor is expected to yield a more profound phenotype than inactivation of the receptor itself (Tauszig-Delamasure et al., 2007). How TrkA and TrkC induce apoptosis remains to be fully elucidated. It seems that proteolysis is involved, either of TrkC itself (Tauszig-Delamasure et al., 2007), as was suggested for other dependence receptors (Bredesen et al., 2005), or by the proteolysis of the neurotrophin receptor p75NTR, which associates with both TrkA and TrkC (Fig. 2; Nikoletopoulou et al., 2010). Surprisingly, although TrkA and TrkC cause cell death, the structurally related TrkB receptor does not (Nikoletopoulou et al., 2010), a difference that appears to be accounted for by their differential localization in the cell membrane. TrkA and TrkC colocalize with p75NTR in lipid rafts, whereas TrkB, which also associates with p75NTR (Bibel et al., 1999), is excluded from lipid rafts (Fig. 2; unpublished data). Interestingly, the transmembrane domains of TrkA and TrkC are closely related, and differ clearly from that of TrkB. It turns out that a chimeric protein of TrkB with the transmembrane domain of TrkA causes cell death, which can be prevented by the addition of the TrkB ligand brain-derived neurotrophic factor (BDNF; unpublished data). The suggestion that the lipid raft localization of TrkA and TrkC is important for their death-inducing function is in line with a number of reports indicating that certain apoptotic proteins preferentially localize in lipid rafts in the plasma membrane. After activation of the extrinsic apoptosis pathway, translocation of the activated receptors to lipid rafts in the membrane is required for assembling the death-inducing signaling complex (DISC; Davis et al., 2007; Song et al., 2007). Indeed, regulators of the extrinsic pathway (e.g., cFLIP; Fig. 1) prevent this translocation, explaining how they attenuate cell death induction (Song et al., 2007). Similarly, the localization of the dependence receptor DCC (deleted in colorectal cancer) in lipid rafts is a prerequisite for its pro-apoptotic activity in absence of its ligand, Netrin-1 (Furne et al., 2006).Open in a separate windowFigure 2.TrkA and TrkC as dependence receptors: mode of action and contrast with TrkB. All Trk receptors associate with the pan-neurotrophin receptor p75NTR (Bibel et al., 1999). A critical step in the induction of apoptosis by TrkA is the release of the intracellular death domain of p75NTR by the protease γ-secretase (Nikoletopoulou et al., 2010), which is localized in lipid rafts (Urano et al., 2005). Our membrane fractionation studies indicate that while TrkA and TrkC associate with p75NTR in lipid rafts, TrkB associated with p75NTR is excluded from this membrane domain (unpublished data). The 24–amino acid transmembrane domain of the Trk receptors may be responsible for this differential localization (see text).Despite the fact that TrkB does not act as a dependence receptor, its activation by BDNF is required for the survival of several populations of cranial sensory neurons (Ernfors et al., 1995; Liu et al., 1995). It appears that other death-inducing receptors predispose these neurons to be eliminated, such as p75NTR, which is expressed at high levels in some of these ganglia, or TrkC in vestibular neurons (Stenqvist et al., 2005). This latter case is of special interest, as NT3 is known not to be required for the survival of these neurons (Stenqvist et al., 2005). In addition to inducing apoptosis in the absence of their ligand, TrkA and TrkC have long been recognized to have a pro-survival function similar to TrkB, as can be inferred from the loss of specific populations of peripheral sensory neurons in mutants lacking these receptors (Klein et al., 1994; Smeyne et al., 1994).

Cell death in the CNS

Although TrkA is primarily expressed in peripheral sympathetic and sensory neurons, it is also found in a small population of cholinergic neurons in the basal forebrain (Sobreviela et al., 1994), a proportion of which requires NGF for survival (Hartikka and Hefti, 1988; Crowley et al., 1994; Müller et al., 2012). Selective deletion of TrkA was recently shown not to cause the death of these neurons (Sanchez-Ortiz et al., 2012). This supports the notion that TrkA acts as a dependence receptor for this small population of CNS neurons, like for peripheral sensory and sympathetic neurons. TrkA activation by NGF is essential for the maturation, projections, and function of these neurons (Sanchez-Ortiz et al., 2012), as was previously described for sensory neurons in the PNS as well (Patel et al., 2000).Whether or not receptors other than TrkA act as dependence receptors in the CNS is an important open question, particularly because TrkB, which is expressed highly by most CNS neurons, does not act as a dependence receptor (Nikoletopoulou et al., 2010). In retrospect, the structural similarities between TrkA and TrkB, just like those between NGF and BDNF (Barde, 1989), have substantially misled the field by suggesting that BDNF would act in the CNS like NGF in the PNS. Adding to the confusion were early findings showing that BDNF supports the growth of spinal cord motoneurons in vitro or in vivo after axotomy (Oppenheim et al., 1992; Sendtner et al., 1992; Yan et al., 1992). However, in the absence of lesion, deletion of BDNF does not lead to significant losses of neurons in the developing or adult CNS (Ernfors et al., 1994a; Jones et al., 1994; Rauskolb et al., 2010), unlike the case in some populations of PNS neurons. The poor correlation of the role of BDNF in CNS development and in axotomy and in vitro experiments is surprising, especially because the role of NGF in vivo could in essence be recapitulated by in vitro experiments. Although the reasons for this discrepancy are not fully understood, the strong up-regulation of death-inducing molecules such as p75NTR after axotomy (Ernfors et al., 1989) may be a part of the explanation. At present, most of the growth factors promoting the survival of PNS neurons fail to show significant survival properties for developing neurons in the CNS, as for example was shown for NT3 (Ernfors et al., 1994b; Fariñas et al., 1994), glial cell line–derived neurotrophic factor (GDNF; Henderson et al., 1994), ciliary neurotrophic factor (CNTF; DeChiara et al., 1995), and several others.In the developing CNS, neuronal activity and neurotransmitter input seem to play a more significant role than single growth factors in regulating neuronal survival. In particular, it has been known for a long time that blocking synaptic transmission at the neuromuscular junction has a pro-survival effect on spinal cord motoneurons (Pittman and Oppenheim, 1978; Oppenheim et al., 2008). By contrast, surgical denervation of afferent connections leads to increased apoptosis of postsynaptic neurons (Okado and Oppenheim, 1984), whereas inhibiting glycinergic and GABAergic synaptic transmission has both pro- and anti-apoptotic effects on motoneurons (Banks et al., 2005). Throughout the developing brain, blocking glutamate-mediated synaptic transmission involving NMDA receptors markedly increases normally occurring neuronal death (Ikonomidou et al., 1999; Heck et al., 2008). The mechanism involves a reduction of neuronal expression of anti-apoptotic proteins, such as B-cell lymphoma 2 (BCL-2; Hansen et al., 2004). Conversely, a limited increase in neuronal activity leads to down-regulation of the pro-apoptotic genes BAX and caspase 9 (Léveillé et al., 2010), thereby reducing the propensity of these cells to initiate programmed cell death (Hardingham et al., 2002). In addition to directly modulating the expression of apoptotic proteins, neuronal activity affects the expression of several secreted growth factors, such as BDNF (Hardingham et al., 2002; Hansen et al., 2004) and GDNF (Léveillé et al., 2010). So, even though BDNF is not a major survival factor in the developing CNS, it appears to be critical for activity-dependent neuroprotection (Tremblay et al., 1999). A recent publication revealed that certain populations of neurons in the CNS do not follow the predictions of the neurotrophic theory and showed that apoptosis of cortical inhibitory neurons is independent of cues present in the developing cerebral cortex (Southwell et al., 2012). This study indicates that programmed cell death of a large proportion of interneurons in the CNS is regulated by intrinsic mechanisms that are largely resistant to the presence or absence of extrinsic cues (Dekkers and Barde, 2013).Taken together, even though the extent of naturally occurring cell death in the different regions of the CNS is not nearly as well characterized as in the PNS, let alone quantified, it appears that its regulation may significantly differ. Although single secreted neurotrophic factors seem to be largely dispensable for survival, neuronal activity and other intrinsic mechanisms drive the propensity of the neurons in the CNS to undergo apoptosis. An important open question in this context is a possible involvement of non-neuronal cells, such as glial cells (see Corty and Freeman, in this issue).

The apoptotic machinery as a regulator of connectivity

Activation of the executor caspases has been most studied in cell bodies and typically results in the demise of the entire cell (Williams et al., 2006). However, recent evidence shows that caspases are also activated locally in neuronal processes and branches destined to be eliminated, for example in axons overshooting their targets that are subsequently pruned back to establish the precise adult connectivity (Finn et al., 2000; Raff et al., 2002; Luo and O’Leary, 2005; Buss et al., 2006b). Initially, axonal degeneration and axon pruning were thought to be independent of caspases (Finn et al., 2000; Raff et al., 2002). Later work in Drosophila melanogaster (Kuo et al., 2006; Williams et al., 2006) and in mammalian neurons (Plachta et al., 2007; Nikolaev et al., 2009; Vohra et al., 2010) demonstrated that interfering with the apoptotic balance or the executor caspases can prevent or at least delay axonal degeneration. Simon et al. (2012) have found that a caspase 9 to caspase 3 cascade is crucial for axonal degeneration induced by NGF withdrawal, with caspase 6 activation playing a significant but subsidiary role. Upstream of the caspases, BCL-2 family members such as BAX and BCL-Xl are required (Nikolaev et al., 2009; Vohra et al., 2010). It is conceivable that the failure of ipRGCs in BAX-deficient mice to form appropriate connections to other cells in the retina (Chen et al., 2013) may be in part attributable to defective axonal degeneration. Surprisingly, Apaf1 appears not to be involved in this process (Cusack et al., 2013), suggesting that axon degeneration depends on the concerted activation of the intrinsic initiator complex in a different way from apoptosis.Strikingly, a series of recent studies showed that several caspases and components of the intrinsic pathway also affect normal synaptic physiology in adulthood (Fig. 3, A–D). Here, pro-apoptotic proteins are predominantly involved in weakening the synapses, whereas the anti-apoptotic proteins have been mainly associated with synaptic strengthening (Fig. 3 B). In particular, caspase 3 promotes long-term depression (LTD), a stimulation paradigm that results in a period of decreased synaptic transmission (Li et al., 2010), and also prevents long-term potentiation (LTP), the converse situation leading to strengthened synaptic transmission (Jo et al., 2011). Likewise, the proapoptotic BCL-2 family members BAX and BAD stimulate LTD (Jiao and Li, 2011). By contrast, the anti-apoptotic protein BCL-Xl increases synapse numbers and strength (H. Li et al., 2008), and the inhibitor of apoptosis protein (IAP) family member survivin was reported to be involved in LTP in the hippocampus (Iscru et al., 2013) and in activity-dependent gene regulation (O’Riordan et al., 2008).Open in a separate windowFigure 3.Canonical and noncanonical functions of the apoptotic machinery. (A) The apoptotic machinery is not only involved in eliminating cells destined to die, but is also a central player in refining neuronal connectivity, by regulating synaptic transmission and by generating the adult connectivity through axon pruning (Luo and O’Leary, 2005; Hyman and Yuan, 2012). But how the canonical and noncanonical roles of the apoptotic machinery are interlinked and spatially restricted is not well understood. (B) In the adult nervous system, the pro-apoptotic proteins BAX, caspase 9, and caspase 3 promote weakening of synapses (long-term depression [LTD]; Li et al., 2010; Jiao and Li, 2011; Jo et al., 2011), while the anti-apoptotic proteins Bcl-Xl and the IAP survivin promote synaptic strengthening (long-term potentiation [LTP]; Li et al., 2008a; Iscru et al., 2013). It is unclear how the activation of these pathways is restricted to a single synapse, but a recent review suggested that the proteasomal degradation of activated caspases may prevent their diffusion (Hyman and Yuan, 2012). (C) Caspase activation is now known to be required for axon pruning during development to generate the adult refined connectivity (Luo and O’Leary, 2005; Simon et al., 2012). Different pathways are activated depending on the stimulus leading to degeneration. Growth factor deprivation during development leads to activation the executor caspases 3 and 6 (Simon et al., 2012) through the intrinsic apoptotic pathway, although its core protein Apaf1 does not seem to be required for this process (Cusack et al., 2013). On the other hand, a traumatic injury leads to reduced influx of NMNAT2 into the axon, which negatively affects the stability and function of mitochondria and leads to an increased calcium concentration (Wang et al., 2012). The effector caspase, caspase 6, is dispensable for this form of axonal degeneration (Vohra et al., 2010; Simon et al., 2012). Regulatory proteins such as the IAPs and also the proteasome seem to play a role in limiting the extent of activation to the degenerating part of the axon (Wang et al., 2012; Cusack et al., 2013; Unsain et al., 2013). (D) Simplified schematic of the main pro- and anti-apoptotic components. DISC, death-induced signaling complex. IAP, inhibitor of apoptosis protein. See Fig. 1 for details.These findings indicate that the apoptotic machinery acts at different levels in the cell, ranging from driving sub-lethal degradation of a compartment (Fig. 3 C) and attenuating synaptic transmission at the neuronal network level (Fig. 3 B) to destroying the entire cell during development or in disease (Fig. 3 D). How the cell spatially restricts the extent of activation of the apoptotic machinery is yet unclear. For example, elimination of the somata of developing neurons after neurotrophin deprivation is preceded by axonal degeneration, but not all instances of axonal degeneration lead to the death of the neuron (Campenot, 1977; Raff et al., 2002). Local regulation of caspase activation by IAPs is well established as a means for ensuring the elimination of neuronal processes in D. melanogaster (Kuo et al., 2006; Williams et al., 2006). Recent findings suggest a similar role for IAP in mammalian neurons, where it limits caspase activation to the degenerating axon (Fig. 3 C; Cusack et al., 2013; Unsain et al., 2013). The spontaneous mutation Wallerian degeneration slow (WldS; Lunn et al., 1989) has been instrumental to understand that trauma-induced axon degeneration is a regulated process different from, and independent of, cell body degeneration (Wang et al., 2012), but also distinct from axon pruning (Hoopfer et al., 2006). Work on the chimeric protein encoded by the WldS mutation also led to the identification of the protein NMNAT2 (nicotinamide mononucleotide adenylyltransferase 2) as a labile axon survival factor (Gilley and Coleman, 2010). How the WldS chimeric protein and NMNAT2 result in axon protection is unclear, but several lines of evidence seem to converge on local regulation of mitochondrial function and motility (Avery et al., 2012; Fang et al., 2012).Related to the spatial limiting of apoptotic activity is the question of how a local source of neurotrophins leads to the rescue of a developing peripheral neuron. When neurons encounter a source of neurotrophins, only the receptors close to the target will be activated, whereas the others, located further away, are not. The cell, therefore, needs to integrate a pro-survival signal from the activated receptors, and death-inducing signals from the nonactivated dependence receptors. The continued signaling of activated neurotrophin receptors that are retrogradely transported to the soma (Grimes et al., 1996; Howe et al., 2001; Wu et al., 2001; Harrington et al., 2011) likely play a role in counteracting the pro-apoptotic signaling proximal to the source of neurotrophins. It will be interesting to investigate whether similar mechanisms play a role in axon pruning and traumatic axon degeneration as well.

Programmed cell death in the adult brain

Most of the nervous system becomes post-mitotic early in development. In rodents, two brain areas retain the capacity to generate new neurons in the adult: the sub-ventricular zone, which generates neurons that migrate toward the olfactory bulb, and the sub-granular zone of the dentate gyrus of the hippocampus, where neurons are generated that integrate locally. Similar to what is observed during embryonic development, these adult-generated neurons are produced in excess, and a large fraction undergoes apoptosis when contacting its designated targets (Petreanu and Alvarez-Buylla, 2002; Kempermann et al., 2003; Ninkovic et al., 2007). Preventing apoptosis of adult-generated neurons in the olfactory bulb only has limited functional consequences (Kim et al., 2007), whereas a similar maneuver in the dentate gyrus does lead to impaired performance in memory tasks (Kim et al., 2009). Why superfluous hippocampal neurons would need to be eliminated for proper function is a matter of speculation, but may be linked with the fact that these are excitatory projection neurons, whereas in the olfactory bulb only axon-less inhibitory granule cells are integrated. The extent of survival in both these areas critically depends on the activity of the neuronal network in which these newly born neurons have to integrate (Petreanu and Alvarez-Buylla, 2002; Kempermann et al., 2006; Ninkovic et al., 2007). In this context, BDNF, the expression level of which is well known to be regulated by network activity, supports the survival of young adult–generated neurons and possibly even stimulates the proliferation of neural progenitors (Y. Li et al., 2008; Waterhouse et al., 2012). Interestingly, in young adult mouse mutants that exhibit spontaneous epileptic seizures, significantly higher levels of BDNF have been measured (Lavebratt et al., 2006; Heyden et al., 2011). Concomitantly, the entire hippocampal formation is considerably enlarged by as much as 40% (Lavebratt et al., 2006; Angenstein et al., 2007), which in turn is dependent on the epileptic seizures (Lavebratt et al., 2006). Whether or not there is a causal relationship between increased BDNF levels and hippocampal volume remains to be established.

Conclusion

Now that is has become clear that action of the apoptotic machinery can be limited spatially and temporally, several questions need to be addressed: how do neurons integrate intrinsic and extrinsic pro- and anti-apoptotic signals; and how they are spatially restricted to allow degradation of a dendrite or axon, or modulation of synaptic transmission? Another important issue is the regulation of cell death by intrinsic mechanisms in the central nervous system of vertebrates, not least because programmed cell death is observed in the CNS in a number of neurodegenerative diseases (Vila and Przedborski, 2003). Indeed, several of the central apoptotic components discussed here are also involved in these disorders (Hyman and Yuan, 2012). New insights in the regulation of programmed cell death in the developing nervous system may therefore continue to help to better understand the pathophysiological mechanisms of neurodegenerative disorders.  相似文献   

19.
A little sugar goes a long way: The cell biology of O-GlcNAc     
Michelle R. Bond  John A. Hanover 《The Journal of cell biology》2015,208(7):869-880
  相似文献   

20.
Conserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species     
Sebastian Klie  Sonia Osorio  Takayuki Tohge  María F. Drincovich  Aaron Fait  James J. Giovannoni  Alisdair R. Fernie  Zoran Nikoloski 《Plant physiology》2014,164(1):55-68
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号