首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia-induced excessive pulmonary artery smooth muscle cell (PASMC) proliferation plays an important role in the pathology of pulmonary arterial hypertension (PAH). Berberine (BBR) is reported as an effective antiproliferative properties applied in clinical. However, the effect of BBR on PAH remains unclear. In the present study, we elucidated the protective effects of BBR against abnormal PASMC proliferation and vascular remodeling in chronic hypoxia-induced hearts. Furthermore, the potential mechanisms of BBR were investigated. For this purpose, C57/BL6 mice were exposed to chronic hypoxia for 4 weeks to mimic severe PAH. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased the right ventricular systolic pressure (RVSP), the right ventricle/left ventricle plus septum RV/(LV + S) weight ratio, and the median width of pulmonary arterioles. BBR attenuated the elevations in RVSP and RV/(LV + S) and mitigated pulmonary vascular structure remodeling. BBR also suppressed the hypoxia-induced increases in the expression of proliferating cell nuclear antigen (PCNA) and of α-smooth muscle actin. Furthermore, administration of BBR significantly increased the expression of bone morphogenetic protein type II receptor (BMPR-II) and its downstream molecules P-smad1/5 and decreased the expression of transforming growth factor-β (TGF-β) and its downstream molecules P-smad2/3. Moreover, peroxisome proliferator-activated receptor γ expression was significantly decreased in the hypoxia group, and this decrease was reversed by BBR treatment. Our study demonstrated that the protective effect of BBR against hypoxia-induced PAH in a mouse model may be achieved through altered BMPR-II and TGF-β signaling.  相似文献   

2.
Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and obliterative pulmonary vascular remodelling (PVR). The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important cause of PVR leading to PAH. Mitochondria play a key role in the production of hypoxia-induced pulmonary hypertension (HPH). However, there are still many issues worth studying in depth. In this study, we demonstrated that NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 like 2 (NDUFA4L2) was a proliferation factor and increased in vivo and in vitro through various molecular biology experiments. HIF-1α was an upstream target of NDUFA4L2. The plasma levels of 4-hydroxynonene (4-HNE) were increased both in PAH patients and hypoxic PAH model rats. Knockdown of NDUFA4L2 decreased the levels of malondialdehyde (MDA) and 4-HNE in human PASMCs in hypoxia. Elevated MDA and 4-HNE levels might be associated with excessive ROS generation and increased expression of 5-lipoxygenase (5-LO) in hypoxia, but this effect was blocked by siNDUFA4L2. Further research found that p38-5-LO was a downstream signalling pathway of PASMCs proliferation induced by NDUFA4L2. Up-regulated NDUFA4L2 plays a critical role in the development of HPH, which mediates ROS production and proliferation of PASMCs, suggesting NDUFA4L2 as a potential new therapeutic target for PAH.  相似文献   

3.
We have demonstrated that adiponectin has anti-atherosclerotic properties. We also reported hypoadiponectinemia and nocturnal reduction in circulating adiponectin concentrations in patients of severe obstructive sleep apnea-hypopnea syndrome (OSAS). OSAS is often complicated with pulmonary hypertension. In this study, we investigated the effect of adiponectin on chronic hypoxia-induced pulmonary arterial remodeling in mice. Exposure of mice to 3-weeks sustained hypoxia (10% O2) resulted in significant accumulation of adiponectin in pulmonary arteries. The percentage media wall thickness (%MT), representing pulmonary arterial remodeling, under hypoxic condition, was greater in adiponectin-knockout mice than wild-type mice. Overexpression of adiponectin significantly decreased hypoxia-induced pulmonary arterial wall thickening and right ventricular hypertrophy. These findings demonstrate for the first time that overexpression of adiponectin suppresses the development of hypoxic-induced pulmonary remodeling, and that adiponectin may combat a new strategy for pulmonary vascular changes that underlie pulmonary hypertension in OSAS.  相似文献   

4.
The aim of the present study was to investigate the underlying mechanism of AS-IV and CCN1 in PAH and to evaluate whether the protective effect of AS-IV against PAH is associated with CCN1 and its related signalling pathway. In vivo, male SD rats were intraperitoneally injected with monocrotaline (MCT, 60 mg/kg) or exposed to hypoxia (10% oxygen) and gavaged with AS-IV (20, 40 and 80 mg/kg/day) to create a PAH model. In vitro, human pulmonary artery endothelial cells (hPAECs) were exposed to hypoxia (3% oxygen) or monocrotaline pyrrole (MCTP, 60 μg/mL) and treated with AS-IV (10, 20 and 40 μM), EGF (10 nM, ERK agonist), small interfering CCN1 (CCN1 siRNA) and recombinant CCN1 protein (rCCN1, 100 ng/mL). We identified the differences in the expression of genes in the lung tissues of PAH rats by proteomics. At the same time, we dynamically detected the expression of CCN1 by Western blot both in vivo and in vitro. The Western blot experimental results showed that the expression of CCN1 increased in the early stage of PAH and decreased in the advanced stage of PAH. The results showed that compared with the control group, MCT- and hypoxia-induced increased the hemodynamic parameters and apoptosis. AS-IV can improve PAH, as characterized by decreased hemodynamic parameters, vascular wall area ratio (WA%), vascular wall thickness ratio (WT%) and α-SMA expression and inhibition of cell apoptosis. Moreover, the improvement of PAH by AS-IV was accompanied by increased CCN1 expression, which activated the ERK1/2 signalling pathway. Meanwhile, CCN1 and p-ERK1/2 were inhibited by siCCN1 and promoted by rCCN1. EGF not only activated the ERK1/2 signalling pathway but also induced the expression of CCN1. In conclusion, AS-IV improves PAH by increasing the expression of CCN1 and activating the ERK1/2 signalling pathway. The results of our study provide a theoretical basis for additional study on the protective effect of AS-IV against PAH.  相似文献   

5.
6.
Recently identified molecular targets in pulmonary artery hypertension (PAH) include sphingosine-1-phosphate (S1P) and zinc transporter ZIP12 signaling. This study sought to determine linkages between these pathways, and with BMPR2 signaling. Lung tissues from a rat model of monocrotaline-induced PAH and therapeutic treatment with bone marrow–derived endothelial-like progenitor cells transduced to overexpress BMPR2 were studied. Multifluorescence quantitative confocal microscopy (MQCM) was applied for analysis of protein expression and localization of markers of vascular remodeling (αSMA and BMPR2), parameters of zinc homeostasis (zinc transporter SLC39A/ZIP family members 1, 10, 12 and 14; and metallothionein MT3) and S1P extracellular signaling (SPHK1, SPNS2, S1P receptor isoforms 1, 2, 3, 5) in 20–200 µm pulmonary microvessels. ZIP12 expression in whole lung tissue lysates was assessed by western blot. Spearman nonparametric correlations between MQCM readouts and hemodynamic parameters, Fulton index (FI), and right ventricular systolic pressure (RVSP) were measured. In line with PAH status, pulmonary microvessels in monocrotaline-treated animals demonstrated significant (p < .05, n = 6 per group) upregulation of αSMA (twofold) and downregulation of BMPR2 (20%). Upregulated ZIP12 (92%), MT3 (57.7%), S1PR2 (54.8%), and S1PR3 (30.3%) were also observed. Significant positive and negative correlations were demonstrated between parameters of zinc homeostasis (ZIP12, MT3), S1P signaling (S1PRs, SPNS2), and vascular remodeling (αSMA, FI, RVSP). MQCM and western blot analysis showed that monocrotaline-induced ZIP12 upregulation could be partially negated by BMPR2-targeted therapy. Our results indicate that altered zinc transport/storage and S1P signaling in the monocrotaline-induced PAH rat model are linked to each other, and could be alleviated by BMPR2-targeted therapy.  相似文献   

7.
The specific mechanism of pulmonary arterial hypertension (PAH) remains elusive. The present study aimed to explore the underlying mechanism of PAH through the identity of novel biomarkers for PAH using metabolomics approach. Serum samples from 40 patients with idiopathic PAH (IPAH), 20 patients with congenital heart disease‐associated PAH (CHD‐PAH) and 20 healthy controls were collected and analysed by ultra‐high‐performance liquid chromatography coupled with high‐resolution mass spectrometry (UPLC‐HRMS). Orthogonal partial least square‐discriminate analysis (OPLS‐DA) was applied to screen potential biomarkers. These results were validated in monocrotaline (MCT)‐induced PAH rat model. The OPLS‐DA model was successful in screening distinct metabolite signatures which distinguished IPAH and CHD‐PAH patients from healthy controls, respectively (26 and 15 metabolites). Unbiased analysis from OPLS‐DA identified 31 metabolites from PAH patients which were differentially regulated compared to the healthy controls. Our analysis showed dysregulation of the different metabolic pathways, including lipid metabolism, glucose metabolism, amino acid metabolism and phospholipid metabolism pathways in PAH patients compared to their healthy counterpart. Among these metabolites from dysregulated metabolic pathways, a panel of metabolites from lipid metabolism and fatty acid oxidation (lysophosphatidylcholine, phosphatidylcholine, perillic acid, palmitoleic acid, N‐acetylcholine‐d ‐sphingomyelin, oleic acid, palmitic acid and 2‐Octenoylcarnitine metabolites) were found to have a close association with PAH. The results from the analysis of both real‐time quantitative PCR and Western blot showed that expression of LDHA, CD36, FASN, PDK1 GLUT1 and CPT‐1 in right heart/lung were significantly up‐regulated in MCT group than the control group.  相似文献   

8.
Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+] i mobilization. In the present study, hypoxia exposure of rat's model was established. Two-pore segment channels (TPCs) silencing was achieved in rats' models by injecting Lsh-TPC1 or Lsh-TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP-activated [Ca2+]i shows to be mediated via two-pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia-induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh-TPC1 or Lsh-TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP-AM-induced PASMC proliferation and [Ca2+]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP-AM- induced [Ca2+]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.  相似文献   

9.
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by vascular remodeling, endothelial cell (EC) dysfunction, and inflammation. The roles of microRNAs have received much critical attention. Thus, this study was attempted to show the biological function of miR-181a/b-5p (miR-181a/b) in monocrotaline (MCT)-induced PAH. Here, rats injected with MCT were used as PAH models. The expression of miR-181a/b and its effect on PAH pathologies were examined using miR-181a/b overexpression lentivirus. A luciferase reporter analysis was performed to measure the relationships between miR-181a/b and endocan. Additionally, primary rat pulmonary arterial endothelial cells (rPAECs) treated with tumor necrosis factor-α (TNF-α) were employed to further validate the regulatory mechanism of miR-181a/b in vitro. Our results showed that miR-181a/b expression was reduced in PAH, and its upregulation significantly attenuated the short survival period, right ventricular systolic pressure and mean pulmonary artery pressure increments, right ventricular remodeling, and lung injury. Furthermore, the increase of intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) in PAH rats was inhibited by miR-181a/b overexpression. Similarly, our in vitro results showed that inducing miR-181a/b suppressed TNF-α-stimulated increase of ICAM1 and VCAM1 in rPAECs. Importantly, the increased expression of endocan in PAH model or TNF-α-treated rPAECs was restored by miR-181a/b upregulation. Further analysis validated the direct targeting relationships between miR-181a/b and endocan. Collectively, this study suggests that miR-181a/b targets endocan to ameliorate PAH symptoms by inhibiting inflammatory states, shedding new lights on the prevention and treatment of PAH.  相似文献   

10.
Abstract

Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and suppressed apoptosis. Platelet-derived growth factor (PDGF) is a potent mitogen involved in cell proliferation and migration. PDGF-BB induces the proliferation and migration of PASMCs and has been proposed to be a key mediator in the progression of PAH. Previous studies have shown that PDGF and its receptor are substantially elevated in lung tissues and PASMCs isolated from patients and animals with PAH, but the underlying mechanisms are still poorly manifested. MAP kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase1/2 (JNK1/2), and p38 are the key intracellular signals for stimuli-induced cell proliferation, survival, and apoptosis. Therefore, the purpose of this study is to determine whether PDGF-BB on cell proliferation process is mediated through the MAP kinases pathway in human PASMCs (HPASMCs). Our results showed PDGF-BB-induced proliferating cell nuclear antigen (PCNA), Cyclin A and Cyclin E expression in a concentration-dependent manner. The expression levels of phosphorylated JNK (p-JNK) was upregulated with 20?ng/ml PDGF-BB treatment, while PDGF-BB could not increase phosphorylated ERK1/2 (p-ERK1/2) and p-38 (p-p38) expression. The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of antagonist of the JNK pathway or si-JNK. In addition, PDGF-BB protected against the loss of mitochondrial membrane potentials evoked by serum deprivation (SD) in a JNK-dependent manner. These results suggest that PDGF-BB promotes HPASMCs proliferation and survival, which is likely to be mediated via the JNK pathway.  相似文献   

11.
Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by sustained elevated pulmonary arterial pressures in which the pulmonary vasculature undergoes significant structural and functional remodeling. To better understand disease mechanisms, in this review article we highlight recent insights into the regulation of pulmonary arterial cells by mechanical cues associated with PAH. Specifically, the mechanobiology of pulmonary arterial endothelial cells (PAECs), smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs) has been investigated in vivo, in vitro, and in silico. Increased pulmonary arterial pressure increases vessel wall stress and strain and endothelial fluid shear stress. These mechanical cues promote vasoconstriction and fibrosis that contribute further to hypertension and alter the mechanical milieu and regulation of pulmonary arterial cells.  相似文献   

12.
Background. In patients with pulmonary hypertension, it is unknown whether the treatment effect of bosentan is dependent on the duration of pulmonary vessel changes. Therefore, we studied the response to bosentan in patients with life-long pulmonary vessel changes (pulmonary arterial hypertension (PAH) due to congenital heart disease (CHD)) and in patients with subacutely induced pulmonary vessel changes (chronic thromboembolic pulmonary hypertension (CTEPH)). Methods. In this open-label study, 18 patients with PAH due to CHD and 16 patients with CTEPH were treated with bosentan for at least one year. All patients were evaluated at baseline and during follow-up by means of the six-minute walk distance (6-MWD) and laboratory tests. Results. Improvement of 6-MWD was comparable in patients with PAH due to CHD (444±112 m to 471±100 m, p=0.02), and in CTEPH (376±152 m to 423±141 m, p=0.03) after three months of treatment. After this improvement, 6-MWD stabilised in both groups. Conclusion. Although duration of pulmonary vessel changes is strikingly different in patients with PAH due to CHD and CTEPH, the effect of one year of bosentan treatment was comparable. The main treatment effect appears to be disease stabilisation and decreasing the rate of deterioration. (Neth Heart J 2009;17:334–8.)  相似文献   

13.
Given the difficulty of diagnosing early-stage pulmonary arterial hypertension (PAH) due to the lack of signs and symptoms, and the risk of an open lung biopsy, the precise pathological features of presymptomatic stage lung tissue remain unknown. It has been suggested that the maximum elevation of the mean pulmonary arterial pressure (Ppa) is achieved during the early symptomatic stage, indicating that the elevation of the mean Ppa is primarily driven by the pulmonary vascular tone and/or some degree of pulmonary vascular remodeling completed during this stage. Recently, the examination of a rat model of severe PAH suggested that the severe PAH may be primarily determined by the presence of intimal lesions and/or the vascular tone in the early stage. Human data seem to indicate that intimal lesions are essential for the severely increased pulmonary arterial blood pressure in the late stage of the disease.However, many questions remain. For instance, how does the pulmonary hemodynamics change during the course of the disease, and what drives the development of severe PAH? Although it is generally acknowledged that both pulmonary vascular remodeling and the vascular tone are important determinants of an elevated pulmonary arterial pressure, which is the root cause of the time-dependent progression of the disease? Here we review the recent histopathological concepts of PAH with respect to the progression of the lung vascular disease.  相似文献   

14.
Liu T  Guo X  Meng Q  Wang C  Liu Q  Sun H  Ma X  Kaku T  Liu K 《Peptides》2012,35(1):78-85
Pulmonary vascular endothelial nitric oxide (NO) synthase (eNOS)-derived NO is the major stimulant of cyclic guanosine 5'-monophosphate (cGMP) production and NO/cGMP-dependent vasorelaxation in the pulmonary circulation. We recently synthesized multiple peptides and reported that an eleven amino acid (SSWRRKRKESS) peptide (P1) but not scrambled P1 stimulated the catalytic activity but not expression of eNOS and causes NO/cGMP-dependent sustained vasorelaxation in isolated pulmonary artery (PA) segments and in lung perfusion models. Since cGMP levels can also be elevated by inhibition of phosphodiesterase type 5 (PDE-5), this study was designed to test the hypothesis that P1-mediated vesorelaxation is due to its unique dual action as NO-releasing PDE-5 inhibitor in the pulmonary circulation. Treatment of porcine PA endothelial cells (PAEC) with P1 caused time-dependent increase in intracellular NO release and inhibition of the catalytic activity of cGMP-specific PDE-5 but not PDE-5 protein expression leading to increased levels of cGMP. Acute hypoxia-induced PA vasoconstriction ex vivo and continuous telemetry monitoring of hypoxia (10% oxygen)-induced elevated PA pressure in freely moving rats were significantly restored by administration of P1. Chronic hypoxia (10% oxygen for 4 weeks)-induced alterations in PA perfusion pressure, right ventricular hypertrophy, and vascular remodeling were attenuated by P1 treatment. These results demonstrate the potential therapeutic effects of P1 to prevent and/or arrest the progression of hypoxia-induced PAH via NO/cGMP-dependent modulation of hemodynamic and vascular remodeling in the pulmonary circulation.  相似文献   

15.
16.
目的探索脂肪干细胞(ADSC)移植治疗野百合碱(MCT)诱导的肺动脉高压(PAH)大鼠的适宜细胞数和干预时间。 方法(1)MCT的建模时效和量效:雄性SD大鼠48只分为正常对照组,20 mg/kg、30 mg/kg、40 mg/kg MCT组分别予腹腔注射生理盐水、MCT 20 mg/kg、30 mg/kg、40 mg/kg,4和8周后,右心室插管法检测平均肺动脉压(mPAP),称重法计算右心室肥厚指数(RVHI)。(2)ADSC的治疗量效作用:雄性SD大鼠分别予腹腔注射MCT(30只)和生理盐水(30只),1周后通过颈静脉注射分别移植0.5×106、1.0×106、3.0×106、5.0×106ADSC,其他组予等量生理盐水。移植3周后检测mPAP和RVHI。(3)ADSC的治疗时效作用:雄性SD大鼠30只,分别注射40 mg/kg MCT(24只)和生理盐水(6只)。MCT腹腔注射1 d,1、2周后分别移植1.0×106个ADSC。MCT注射4周后检测mPAP和RVHI。多组间比较采用单因素或双因素方差分析,两两比较采用LSD检验。 结果(1)腹腔注射4周后,30 mg/ kg或40 mg/kg MCT组mPAP和RVHI均升高[mPAP值(24.89±3.31)mmHg,(27.19±2.11)mmHg比(15.80±0.42)mmHg,差异有统计学意义(P均< 0.05);RVHI值0.42±0.06,0.47±0.04比0.25±0.02,差异有统计学意义(P均< 0.05)]。8周后,20 mg/kg或30 mg/ kg MCT组mPAP和RVHI均恢复正常,而40 mg/kg MCT组大鼠全部死亡。(2)40 mg/ kg MCT诱导的PAH大鼠mPAP和RVHI均升高。移植1.0×106个ADSC可降低PAH大鼠的mPAP[(17.24±0.66)mmHg比(27.19±1.73)mmHg,P < 0.05]。移植0.5×106、3.0×106、5.0× 106个ADSC不能降低PAH大鼠的mPAP和RVHI。(3)MCT腹腔注射1周和2周后,移植1.0×106个ADSC可降低PAH大鼠的mPAP。 结论40 mg/kg MCT造模4周可建立稳定的PAH大鼠模型;造模1或2周后移植1.0×106个ADSC能有效降低PAH大鼠的mPAP。  相似文献   

17.
Chronic hypercapnia is commonly found in patients with severe hypoxic lung disease and is associated with a greater elevation of pulmonary arterial pressure than that due to hypoxia alone. We hypothesized that hypercapnia worsens hypoxic pulmonary hypertension by augmenting pulmonary vascular remodeling and hypoxic pulmonary vasoconstriction (HPV). Rats were exposed to chronic hypoxia [inspiratory O(2) fraction (FI(O(2))) = 0.10], chronic hypercapnia (inspiratory CO(2) fraction = 0.10), hypoxia-hypercapnia (FI(O(2)) = 0.10, inspiratory CO(2) fraction = 0.10), or room air. After 1 and 3 wk of exposure, muscularization of resistance blood vessels and hypoxia-induced hematocrit elevation were significantly inhibited in hypoxia-hypercapnia compared with hypoxia alone (P < 0.001, ANOVA). Right ventricular hypertrophy was reduced in hypoxia-hypercapnia compared with hypoxia at 3 wk (P < 0.001, ANOVA). In isolated, ventilated, blood-perfused lungs, basal pulmonary arterial pressure after 1 wk of exposure to hypoxia (20.1 +/- 1.8 mmHg) was significantly (P < 0.01, ANOVA) elevated compared with control conditions (12.1 +/- 0.1 mmHg) but was not altered in hypoxia-hypercapnia (13.5 +/- 0.9 mmHg) or hypercapnia (11.8 +/- 1.3 mmHg). HPV (FI(O(2)) = 0.03) was attenuated in hypoxia, hypoxia-hypercapnia, and hypercapnia compared with control (P < 0.05, ANOVA). Addition of N(omega)-nitro-L-arginine methyl ester (10(-4) M), which augmented HPV in control, hypoxia, and hypercapnia, significantly reduced HPV in hypoxia-hypercapnia. Chronic hypoxia caused impaired endothelium-dependent relaxation in isolated pulmonary arteries, but coexistent hypercapnia partially protected against this effect. These findings suggest that coexistent hypercapnia inhibits hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy, reduces HPV, and protects against hypoxia-induced impairment of endothelial function.  相似文献   

18.
Pulmonary vascular remodeling is an important pathological feature of pulmonary arterial hypertension (PAH), which is characterized by thickening of the medial smooth muscle layer. Hypertrophy of pulmonary artery smooth muscle cells (PASMCs) participates in the development of medial thickening. Genistein can attenuate PAH and inhibit medial thickening of pulmonary arteries. Since hypoxia is one of the main causes of pulmonary hypertension, this study aims to investigate the mechanism of genistein in inhibiting hypertrophic responses in PASMCs induced by hypoxia. Cells isolated from the chick embryo were cultured with or without genistein and subjected to hypoxia or not. The increase of cell surface area and α-smooth muscle actin (α-SMA) of PASMCs was significantly suppressed by genistein during hypoxia. This result was confirmed by the incorporation of puromycin into peptide chains and flow cytometry analysis. Constrained mRNA and protein hypoxia-inducible factor (HIF)-1α expression was improved by genistein under hypoxia condition. Genistein restored redox homeostasis by fluorescent probe determination. The effect of genistein on hypertrophic response was blocked by estrogen receptor inhibitor, β1-adrenoceptor agonist and β2-adrenoceptor antagonist. In conclusion, genistein potently attenuates hypoxia-induced hypertrophy of PASMCs, which may enable a novel therapy for PAH.  相似文献   

19.
研究发现,异氟醚吸入麻醉可明显减轻由缺血-再灌注引起的肺动脉高压(PAH),提示其对肺循环功能有一定保护效应。肺动脉平滑肌细胞(PASMC)是肺动脉血管重塑和PAH发生的主要参与者,其结构改变和功能异常均可显著影响肺动脉高压病情进展。本研究探讨异氟醚对缺氧诱导的PASMC焦亡的影响及其调控机制,旨在为肺动脉高压治疗提供潜在分子靶点。PASMC于37℃、5%CO2、3%O2条件下静置培养24 h建立缺氧模型。RT-PCR和Western印迹等结果显示,缺氧致使PASMC内紅系衍生的核转录因子2(Nrf2)核转位减少,血红素加氧酶-1(HO-1)表达水平下调,而焦亡相关蛋白质,包括NOD样受体蛋白3(NLRP3)、胱天蛋白酶1(caspase-1)、凋亡相关斑点样蛋白(ASC)及消皮素D(GSDMD)等表达上调,活性氧(ROS)生成、胱天蛋白酶1活性和乳酸脱氢酶(LDH)释放水平升高,Hoechst/PI染色显示,焦亡孔洞增加。ELISA结果表明,IL-1β、IL-6、IL-18和TNF-α分泌增加(P<0.05)。异氟醚处理可显著激活Nr...  相似文献   

20.
Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号