首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Endocrine practice》2019,25(3):279-286
Objective: Programmed cell death–ligand 1 (PD-L1) expression on tumor tissue has been associated with favorable response to anti–programmed cell death–receptor 1/PD-L1 therapy in many human cancers. Studies have reported that PD-L1 is also expressed in thyroid cancer. The objective of this paper is to introduce the potential predictive and therapeutic values of PD-L1 in thyroid cancer.Methods: A literature search was conducted in the PubMed database using the terms “PD-L1,” “B7-H1,” and “thyroid cancer.” PD-L1 positivity was determined by immunohistochemical assay.Results: The frequency of PD-L1 positivity in different studies ranged from 6.1 to 82.5% in papillary thyroid cancer (PTC) patients and 22.2 to 81.2% in anaplastic thyroid cancer (ATC) patients. PD-L1 positivity rate was higher in ATC than in PTC within the same studies, and its expression intensity was significantly higher in tumor tissue than in the corresponding nontumor thyroid tissues. Moreover, PD-L1 expression was positively associated with the aggressiveness and recurrence of thyroid cancers and negatively associated with the differentiation status and outcomes. PD-L1 checkpoint pathway blockade may emerge as a promising therapeutic target in the treatment of thyroid cancers.Conclusion: PD-L1 is a potential biomarker to predict the recurrence and prognosis of thyroid cancers. It is also a novel immunotherapy target for optimizing the management landscape of radioiodine-refractory and ATCs.Abbreviations: ATC = anaplastic thyroid cancer; DTC = differentiated thyroid cancer; IHC = immunohistochemical; OS = overall survival; PD-1 = programmed cell death–receptor 1; PD-L1 = programmed cell death–ligand 1; PD-L2 = programmed cell death–ligand 2; PTC = papillary thyroid cancer; TNM = tumor-node-metastasis; Treg = regulatory T cell  相似文献   

2.
3.
Apelin is the endogenous ligand for the APJ, a member of the G protein coupled receptors family. Apelin/APJ system is widely distributed in central nervous system and peripheral tissues, especially in heart, lung and kidney. Apelin plays important physiological and pathological roles in cardiovascular system, immune system, neuroprotection, etc. This article outlines the protective effect of apelin on ischemia/reperfusion (I/R) injury. Apelin could activate multiple protective mechanisms to prevent heart, brain, liver and kidney I/R injury. Apelin/APJ system may be a promising therapeutic target for ischemic and other related diseases.  相似文献   

4.
Apoptosis is a genetically programmed cell death that is required for morphogenesis during embryogenic development and for tissue homeostasis in adult organisms. In most cases, apoptosis involves cytochrome c release from mitochondria. In the cytosol, cytochrome c combines with APAF-1 in the presence of ATP to activate caspase-9 that, in turn, activates effectors caspases such as caspase-3. Bcl-2 and related proteins control cytochrome c release from the mitochondria whereas IAP (for Inhibitor of APoptosis) molecules modulate the activity of caspases. Plasma membrane receptors such as Fas (CD95, APO-1), characterized by a so-called "death domain" in their cytoplasmic domain, can activate the caspase cascade through adaptator molecules such as FADD (Fas-Associated protein with a Death Domain). Dysregulation of the apoptotic machinery plays a role in the pathogenesis of various diseases and molecules involved in cell death pathways are potential therapeutic targets in immunologic, neurologic, cancer, infectious and inflammatory diseases.  相似文献   

5.
Fibrinogen‐like protein 2 (FGL2) has been reported to play a key role in the development of human cancers. However, it is still unmasked whether FGL2 plays a potential role in colorectal carcinogenesis. In this study, the messenger RNA and protein expression levels were measured by quantitative real‐time polymerase chain reaction and western blot. Cell counting kit‐8 assay, transwell migration, and invasion assay were carried out to evaluate the proliferation, migration, and invasion of LOVO and SW620 cells. FGL2 was upregulated in colorectal cancer (CRC) tissues, as well as cell lines. Mitogen‐activated protein kinase (MAPK) signaling was activated in CRC tissues and cell lines. FGL2 was confirmed to be downregulated by MAPK signaling inhibitor U0126. Further, we determined that knockdown of FGL2 caused a reduction of proliferation, migration, and invasion in LOVO and SW620 cells. Consistently, treatment of LOVO and SW620 cells with U0126 led to a decrease in cell proliferation, migration, and invasion. However, these changes initiated by U0126 were abolished by FGL2 overexpression. To conclude, MAPK‐mediated upregulation of FGL2 promotes the proliferation, migration, and invasion of CRC cells.  相似文献   

6.
Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte–associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a β-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain–containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.  相似文献   

7.
The annual incidence of metabolic diseases such as diabetes, non-alcoholic fatty liver disease (NAFLD), osteoporosis, and atherosclerosis (AS) is increasing, resulting in a heavy burden on human health and the social economy. Ferroptosis is a novel form of programmed cell death driven by iron-dependent lipid peroxidation, which was discovered in recent years. Emerging evidence has suggested that ferroptosis contributes to the development of metabolic diseases. Here, we summarize the mechanisms and molecular signaling pathways involved in ferroptosis. Then we discuss the role of ferroptosis in metabolic diseases. Finally, we analyze the potential of targeting ferroptosis as a promising therapeutic approach for metabolic diseases.  相似文献   

8.
It is well known that tumors damage affected tissues; however, the specific mechanism underlying such damage remains elusive. AMP-activated protein kinase (AMPK) senses energetic changes and regulates glucose metabolism. In this study, we examined the mechanisms by which AMPK promotes metabolic adaptation in the tumor-bearing liver using a murine model of colon cancer liver metastasis. Knock-out of AMPK α2 significantly enhanced tumor-induced glucose deprivation in the liver and increased the extent of liver injury and hepatocyte death. Mechanistically, we observed that AMPK α2 deficiency resulted in elevated reactive oxygen species, reduced mitophagy, and increased cell death in response to tumors or glucose deprivation in vitro. These results imply that AMPK α2 is essential for attenuation of liver injury during tumor metastasis via hepatic glucose deprivation and mitophagy-mediated inhibition of reactive oxygen species production. Therefore, AMPK α2 might represent an important therapeutic target for colon cancer metastasis-induced liver injury.  相似文献   

9.
Cell death is a fundamental physiological process that occurs in all organisms and is crucial to each organism's evolution, ability to maintain a stable internal environment, and the development of multiple organ systems. Disulfidptosis is a new mode of cell death that is triggered when cells with high expression of solute carrier family 7 member 11 (SLC7A11) are exposed to glucose starvation to initiate the process of cell death. The disulfidptosis mechanism is a programmed cell death mode that triggers cell death through reduction–oxidation (REDOX) reactions and disulfur bond formation. In disulfidptosis, disulfur bonds play a crucial role and cause the protein in the cell to undergo conformational changes, eventually leading to cell death. This mode of cell death has unique characteristics and regulatory mechanisms in comparison with other modes of cell death. In recent years, an increasing number of studies have shown that the disulfidptosis mechanism plays a key role in the occurrence and development of a variety of diseases. For example, cancer, cardiovascular diseases, neurodegenerative diseases, and liver diseases are all closely related to cell disulfidptosis mechanisms. Therefore, it is of paramount clinical significance to conduct in-depth research regarding this mechanism. This review summarizes the research progress on the disulfidptosis mechanism, including its discovery history, regulatory mechanism, related proteins, and signaling pathways. Potential applications of the disulfidptosis mechanism in disease therapy and future research directions are also discussed. This mechanism represents another subversive discovery after ferroptosis, and provides both a fresh perspective and an innovative strategy for the treatment of cancer, as well as inspiration for the treatment of other diseases.  相似文献   

10.
Breast cancer, as the most common malignancy, is the second leading cause of cancer‐related death in women. One of the kelch family member ENC1 is involved in various pathophysiologic processes. But the role of ENC1 in breast cancer has not been investigated. The present study value the feature, clinical significance and the molecular mechanisms of ENC1 in breast cancer. The expression and prognosis value of ENC1 expression among breast cancer and normal breast tissue were investigated in The Cancer Genome Atlas database and human samples. ENC1 was knockdown to explore its function in various breast cancer cell lines. Western blot was performed to explore the potential molecular mechanisms. We observed that ENC1 was overexpressed in breast cancer tissues. ENC1 overexpression was associated with high metastasis and predicted a poor prognosis in patients with breast cancer. ENC1 Knockdown inhibits the growth, clone formation, migration and invasion of breast cancer cells. Mechanism analysis revealed ENC1 was strong associated with the metastasis by modulating β‐catenin pathway. Our study emphasizes that ENC1 is a potential prognostic and metastasis‐related marker of breast cancer, and may function as a possible therapeutic target against breast cancer.  相似文献   

11.
蛋白质是生命功能的执行者.生命体中某些关键蛋白的功能异常往往是导致疾病发生的根本原因.这些疾病相关蛋白极有可能成为药物靶点,为新药研发和疾病治疗提供重要线索. PICK1蛋白(protein interacting with Cα kinase 1)结合能力广泛、功能多样以及在多种重要疾病(如:癌症、精神分裂症、疼痛、帕金森综合症等)的发生发展过程中发挥潜在的作用,使其成为一个可能的药靶蛋白. PICK1与绝大多数配体蛋白的相互作用是通过其PDZ结构域与配体C末端区域的结合介导的,使PICK1的PDZ结构域成为一个潜在的药物靶点.因此,可以利用生物小分子物质特异性地结合PICK1的PDZ结构域,干扰或阻断PICK1与配体蛋白的天然相互作用,最终达到治疗相关疾病的目的.  相似文献   

12.
Wheat scab, caused by the fungal pathogen Fusarium graminearum is a devastating disease worldwide. Despite an extensive and coordinated effort to investigate this pathosystem, little progress has been made to understand the molecular basis of host–pathogen interactions, for example how the pathogen causes disease in plant. Recently, a secreted lipase (FGL1) has been identified from the fungus and shown to be an important virulence factor; however, the intrinsic function of FGL1 in plant is unknown. Here, we report the identification of the molecular components that may possibly be involved in the FGL virulence pathway using yeast two hybrid system. FGL gene was amplified from a local virulent strain (F15) and shown to be 99.5% identical to the original published FGL at the amino acid level. We showed that transient expression of this FGL gene by Agroinfiltration in tobacco leaves causes cell death further implicating the role of FGL in virulence. To identify FGL initial physical target in plant, we screened two wheat cDNA libraries using the FGL protein as the bait. From both libraries, a small FKBP-type immunophilin protein, designated wFKBP12, was found to physically interact with FGL. The direct interaction of FGL with wFKBP12 was confirmed in living onion epidermal cells by biomolecular fluorescence complementation (BiFC) assay. To investigate further, we then used wFKBP12 protein as bait and identified an elicitor-responsive protein that contains a potential Ca2 + binding domain. Semi-quantitative PCR showed that this elicitor-responsive gene is down-regulated during the F. graminearum infection suggesting that this protein may be an important component in FGL virulence pathway. This work serves as an initial step to reveal how fungal lipases act as a general virulence factor.  相似文献   

13.
Multiple mechanisms of immune suppression by B lymphocytes   总被引:1,自引:0,他引:1  
Suppression of the immune system after the resolution of infection or inflammation is an important process that limits immune-mediated pathogenesis and autoimmunity. Several mechanisms of immune suppression have received a great deal of attention in the past three decades. These include mechanisms related to suppressive cytokines, interleukin (IL)-10 and transforming growth factor (TGF)-β, produced by regulatory cells, and mechanisms related to apoptosis mediated by death ligands, Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), expressed by killer or cytotoxic cells. Despite many lines of evidence supporting an important role for B lymphocytes as both regulatory and killer cells in many inflammatory settings, relatively little attention has been given to understanding the biology of these cells, their relative importance or their usefulness as therapeutic targets. This review is intended to give an overview of the major mechanisms of immunosuppression used by B lymphocytes during both normal and inflammatory contexts. The more recent discoveries of expression of granzyme B, programmed death 1 ligand 2 (PD-L2) and regulatory antibody production by B cells as well as the interactions of regulatory and killer B cells with regulatory T cells, natural killer T (NKT) cells and other cell populations are discussed. In addition, new evidence on the basis of independent characterizations of regulatory and killer CD5(+) B cells point toward the concept of a multipotent suppressor B cell with seemingly high therapeutic potential.  相似文献   

14.
《Autophagy》2013,9(6):660-661
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.  相似文献   

15.
Cheng Y  Yan L  Ren X  Yang JM 《Autophagy》2011,7(6):660-661
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.  相似文献   

16.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

17.
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.  相似文献   

18.
Thrombospondin‐1 (TSP‐1), a matricellular protein and one of the first endogenous anti‐angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP‐1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP‐1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP‐1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP‐1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP‐1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation‐related diseases in humans. We compare the secretion rates of TSP‐1 by different cancer and non‐cancer cells and discuss the potential connection between the expression changes of TSP‐1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP‐1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non‐cancer disorders, are highlighted. The analysis of published TSP‐1 data presented in this review may have implications for the future exploration of novel TSP‐1‐based treatment strategies for cancer and cardiovascular‐related diseases.  相似文献   

19.
The B7 family of immune-regulatory ligands   总被引:7,自引:0,他引:7  
The B7 family consists of structurally related, cell-surface protein ligands, which bind to receptors on lymphocytes that regulate immune responses. Activation of T and B lymphocytes is initiated by engagement of cell-surface, antigen-specific T-cell receptors or B-cell receptors, but additional signals delivered simultaneously by B7 ligands determine the ultimate immune response. These 'costimulatory' or 'coinhibitory' signals are delivered by B7 ligands through the CD28 family of receptors on lymphocytes. Interaction of B7-family members with costimulatory receptors augments immune responses, and interaction with coinhibitory receptors attenuates immune responses. There are currently seven known members of the family: B7.1 (CD80), B7.2 (CD86), inducible costimulator ligand (ICOS-L), programmed death-1 ligand (PD-L1), programmed death-2 ligand (PD-L2), B7-H3, and B7-H4. Members of the family have been characterized predominantly in humans and mice, but some members are also found in birds. They share 20-40% amino-acid identity and are structurally related, with the extracellular domain containing tandem domains related to variable and constant immunoglobulin domains. B7 ligands are expressed in lymphoid and non-lymphoid tissues. The importance of the family in regulating immune responses is shown by the development of immunodeficiency and autoimmune diseases in mice with mutations in B7-family genes. Manipulation of the signals delivered by B7 ligands has shown potential in the treatment of autoimmunity, inflammatory diseases and cancer.  相似文献   

20.
Pyroptosis is a new form of programmed cell death generated by some inflammasomes, piloting the cleavage of gasdermin (GSDM) and stimulation of dormant cytokines like IL-18 and IL-1β; these reactions are narrowly linked to certain diseases like diabetic nephropathy and atherosclerosis. Doxorubicin, a typical anthracycline, and famous anticancer drug has emerged as a prominent medication in several cancer chemotherapies, although its application is accompanied with expending of dose-dependent, increasing, irreversible and continuing cardiotoxic side effects. However, the exact path that links the induced pyroptosis to the mechanism by which Doxorubicin (DOX) acts against breast cancer cells is still puzzling. The present study seeks to elucidate the potential link between DOX-induced cell death and pyroptosis in two human breast cancer cell lines (MDA-MB-231 and T47D). We proved that treatment with DOX reduced the cell viability in a dose-dependent way and induced pyroptosis morphology in MDA-MB-231 and T47D cells. Also, protein expression analyses revealed GSDME as a key regulator in DOX-induced pyroptosis and highlighted the related role of Caspase-3 activation. Furthermore, DOX treatments induced intracellular accumulation of ROS, stimulated the phosphorylation of JNK, and Caspase-3 activation, subsequently. In conclusion, the study suggests that GSDME triggered DOX-induced pyroptosis in the caspase-3 dependent reactions through the ROS/JNK signalling pathway. Additionally, it showed that the DOX-induced cardiotoxicity and pyroptosis in breast cancer cells can be minimized by reducing the protein level of GSDME; thus, these outcomes provide a new research target and implications for the anticancer investigations and therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号