首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu HC  Shieh J  Wright DJ  Azarani A 《BioTechniques》2003,34(1):204-207
An automated high-throughput method that employs rolling circle amplification (RCA) to generate template for large-scale DNA sequencing has been developed using liquid handling systems equipped with precision glass syringes. A protocol was designed to perform the sequencing analysis from template preparation to thermal cycle sequencing within the same vessel, thus minimizing the amount of liquid handling and transfer. The amplified DNA was directly used for cycle sequencing with no need for any purification procedures. Total RCA reaction volumes as low as 500 nL generated sufficient templates for successful sequencing. Reducing the RCA total reaction volumes by a 40-fold factor, from a total of 20 microL to 500 nL, resulted in a significant reduction in cost, from $1.25/reaction to less than $0.04/reaction. Additionally, the volume of the sequencing reactions was reduced from a total of 20 to 10 microL, thus generating a further cost advantage. This high-throughput DNA sequencing protocol maximizes the speed and precision of processing while significantly reducing the cost of amplification.  相似文献   

2.

Background  

Bisulfite sequencing is a popular method to analyze DNA methylation patterns at high resolution. A region of interest is targeted by PCR and about 20-50 subcloned DNA molecules are usually analyzed, to determine the methylation status at single CpG sites and molecule resolution.  相似文献   

3.
In this paper we report on the latest technical advances towards single molecule sequencing, a useful method currently developed especially for fast and easy de novo sequencing. Different approaches for complete labeling of DNA with fluorescent dyes are described. In addition, the experimental set-up for the sequencing process is shown. We demonstrate the ability to purify the buffer and enzyme solutions. Inorganic buffers were purified down to at least 20 fM of remaining fluorescent impurities. The exonuclease buffer solution could be cleaned down to 0.8 pM whereby its full activity was kept. Finally, we show a selection procedure for beads and present the data of a model experiment, in which immobilized DNA is degraded by an exonuclease within a polymethylmethacrylate (PMMA) microstructure. Furthermore, the mathematical processing of the obtained raw data is described. A first complete experimental cycle is shown, combining all preparatory steps which are necessary for single molecule sequencing in microstructures.  相似文献   

4.
Method enabling fast partial sequencing of cDNA clones   总被引:1,自引:0,他引:1  
Pyrosequencing is a nonelectrophoretic single-tube DNA sequencing method that takes advantage of cooperativity between four enzymes to monitor DNA synthesis. To investigate the feasibility of the recently developed technique for tag sequencing, 64 colonies of a selected cDNA library from human were sequenced by both pyrosequencing and Sanger DNA sequencing. To determine the needed length for finding a unique DNA sequence, 100 sequence tags from human were retrieved from the database and different lengths from each sequence were randomly analyzed. An homology search based on 20 and 30 nucleotides produced 97 and 98% unique hits, respectively. An homology search based on 100 nucleotides could identify all searched genes. Pyrosequencing was employed to produce sequence data for 30 nucleotides. A similar search using BLAST revealed 16 different genes. Forty-six percent of the sequences shared homology with one gene at different positions. Two of the 64 clones had unique sequences. The search results from pyrosequencing were in 100% agreement with conventional DNA sequencing methods. The possibility of using a fully automated pyrosequencer machine for future high-throughput tag sequencing is discussed.  相似文献   

5.
High-Cot sequence analysis of the maize genome   总被引:10,自引:0,他引:10  
Higher eukaryotic genomes, including those from plants, contain large amounts of repetitive DNA that complicate genome analysis. We have developed a technique based on DNA renaturation which normalizes repetitive DNA, and thereby allows a more efficient outcome for full genome shotgun sequencing. The data indicate that sequencing the unrenatured outcome of a Cot experiment, otherwise known as High-Cot DNA, enriches genic sequences by more than fourfold in maize, from 5% for a random library to more than 20% for a High-Cot library. Using this approach, we predict that gene discovery would be greater than 95% and that the number of sequencing runs required to sequence the full gene space in maize would be at least fourfold lower than that required for full-genome shotgun sequencing.  相似文献   

6.
A non-radioactive automated method for DNA sequence determination   总被引:27,自引:0,他引:27  
A method and instrument for automated DNA sequencing without radioactivity have been developed. In spite of the success with radioactive labels there are drawbacks attached to the technique, such as hazards in the handling, storage and disposal of radioactive materials, and the considerable cost of the radiolabelled nucleoside triphosphates. In addition, there is deterioration of sample quality with time. A sulphydryl containing M13 sequencing primer has been synthesised and subsequently conjugated with tetramethylrhodamine iodoacetamide. The fluorescent primer is used to generate a nested set of fluorescent DNA fragments. The fluorescent bands are excited by a laser and detected in the gel (detection limit about 0.1 fmol per band) during electrophoresis, and sequence data from the four tracks are transferred directly into a computer. Standard gels, 200 mm wide with 20 sample slots have also been used. The device contains no moving parts. At present 250-300 bases can be read in 6 h. The system is capable of single base resolution at a fragment length of at least 400 bases.  相似文献   

7.
A simple and rapid method has been described for the isolation of plasmid, phagemid and phage DNAs. Hundreds of recombinant clones can be screened in one day employing this method. It takes half an hour to prepare plasmid DNA from ten clones, and the DNA prepared from a single colony using this method is of sufficient quality and in sufficient amount to perform at least five restriction digestions. This method eliminates the need for RNase treatment and phenol chloroform extraction if the plasmids are needed only for the restriction digestion. If needed, RNAs can be removed after restriction digestion by adding RNase and incubating for two minutes at room temperature. After RNase treatment and phenol/chloroform extraction, the plasmid DNA serves as a good template for sequencing. The DNA can be stored at -20 degrees C for over eight weeks.  相似文献   

8.
A simple miniaturized gel system suitable for DNA sequencing is described. Small ultrathin polyacrylamide gels are cast, eight or more at a time, using standard microscope slides. Gels, ready to use, can be stored for approximately 2 weeks. Gels are run horizontally in a standard mini-agarose gel apparatus. Typical run times are 6-8 min. A novel sample loading system permits volumes of standard sequencing reactions as small as 0.1 microl to be analyzed. Sequencing ladders were visualized using 35S-labeled DNA by autoradiography and by colorimetric detection. Band resolution compares favorably with that of large gels. The methods introduced here serve as a step toward the miniaturization of DNA sequencing and are amenable to automated sample loading and detection.  相似文献   

9.
Bisulfite genomic sequencing is a widely used technique foranalyzing cytosine-methylation of DNA. By treating DNA withbisulfite, cytosine residues are deaminated to uracil, whileleaving 5-methylcytosine largely intact. Subsequent PCR andnucleotide sequence analysis permit unequivocal determinationof the methylation status at cytosine residues. A major caveatassociated with the currently practiced procedure is that ittakes 16–20 hr for completion of the conversion of cytosineto uracil. Here we report that a complete deamination of cytosineto uracil can be achieved in shorter periods by using a highlyconcentrated bisulfite solution at an elevated temperature.Time course experiments demonstrated that treating DNA with9 M bisulfite for 20 min at 90°C or 40 min at 70°C allcytosine residues in the DNA were converted to uracil. Underthese conditions, the majority of 5-methylcytosines remainedintact. When a high molecular weight DNA derived from a cellline (containing a number of genes whose methylation statuswas known) was treated with bisulfite under the above conditionsand amplified and sequenced, the results obtained were consistentwith those reported in the literature. Although some degradationof DNA occurred during this process, the amount of treated DNArequired for the amplification was nearly equal to that requiredfor the conventional bisulfite genomic sequencing procedure.The increased speed of DNA methylation analysis with this novelprocedure is expected to advance various aspects of DNA sciences.  相似文献   

10.
B Kaltenboeck  J W Spatafora  X Zhang  K G Kousoulas  M Blackwell  J Storz 《BioTechniques》1992,12(2):164, 166, 168-164, 166, 171
A modification of the asymmetric PCR method is described, which reliably facilitates sequencing of PCR-amplified DNA. This procedure produces single-stranded DNA fragments as long as two kilobases that are suitable for dideoxy DNA sequencing. First, a PCR for double-stranded DNA is preformed under optimal conditions (double-stranded PCR). Then, a 5-10-microliters fraction of the double-stranded PCR and a single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer is approximately 0.4 microM. Usually 15 to 25 cycles of single-stranded PCR are optimal to produce single-stranded DNA for four to eight sequencing reactions. The single-stranded DNA is purified by centrifugal ultrafiltration and used directly in dideoxy sequencing. This method was employed to produce high-quality single-stranded DNA templates from a variety of organisms for efficient DNA sequencing of PCR-amplified DNA.  相似文献   

11.
We describe a new DNA sequencing method called sequencing by denaturation (SBD). A Sanger dideoxy sequencing reaction is performed on the templates on a solid surface to generate a ladder of DNA fragments randomly terminated by fluorescently labeled dideoxyribonucleotides. The labeled DNA fragments are sequentially denatured from the templates and the process is monitored by measuring the change in fluorescence intensities from the surface. By analyzing the denaturation profiles, the base sequence of the template can be determined. Using thermodynamic principles, we simulated the denaturation profiles of a series of oligonucleotides ranging from 12 to 32 bases and developed a base-calling algorithm to decode the sequences. These simulations demonstrate that DNA molecules up to 20 bases can be sequenced by SBD. Experimental measurements of the melting profiles of DNA fragments in solution confirm that DNA sequences can be determined by SBD. The potential limitations and advantages of SBD are discussed. With SBD, millions of sequencing reactions can be performed on a small area on a surface in parallel with a very small amount of sequencing reagents. Therefore, DNA sequencing by SBD could potentially result in a significant increase in speed and reduction in cost in large-scale genome resequencing.  相似文献   

12.
DNA sample contamination is a frequent problem in DNA sequencing studies and can result in genotyping errors and reduced power for association testing. We recently described methods to identify within-species DNA sample contamination based on sequencing read data, showed that our methods can reliably detect and estimate contamination levels as low as 1%, and suggested strategies to identify and remove contaminated samples from sequencing studies. Here we propose methods to model contamination during genotype calling as an alternative to removal of contaminated samples from further analyses. We compare our contamination-adjusted calls to calls that ignore contamination and to calls based on uncontaminated data. We demonstrate that, for moderate contamination levels (5%–20%), contamination-adjusted calls eliminate 48%–77% of the genotyping errors. For lower levels of contamination, our contamination correction methods produce genotypes nearly as accurate as those based on uncontaminated data. Our contamination correction methods are useful generally, but are particularly helpful for sample contamination levels from 2% to 20%.  相似文献   

13.
Ultrasensitive staining of nucleic acids with silver   总被引:14,自引:0,他引:14  
A method for ultrasensitive detection of proteins on polyacrylamide gels by staining with silver, recently described by C. R. Merril, D. Goldman, S. A. Sedman, and M. H. Ebert (Science211, 1437–1438 (1981)), was applied with slight modifications to staining nucleic acids. Silver staining of double-stranded DNA was at least 100 times as sensitive as fluorescence staining with ethidium bromide, and at least 20 times as sensitive as staining with ammoniacal silver. The limit of detection of double-stranded DNA was approximately 25–50 pg/band with a cross-sectional area of 5 mm2. The intensities of silver staining of double-stranded fragments 271 bp or longer from HaeIII endonuclease digests of φX174 RF DNA were linear over a concentration range of 0.25 to 4 ng DNA/band. RNA and single-stranded DNA species as short as 10 to 20 nucleotides were detected with high sensitivity after electrophoresis on denaturing gels containing urea, suggesting that silver staining may be applicable to the sequencing of a few micrograms of unlabeled DNA. Methods for staining DNA using ammoniacal silver were relatively insensitive for small DNA fragments.  相似文献   

14.
A DNA extraction kit, ISOHAIR® (Nippon Gene), which was originally developed for preparing DNA from hair and nail samples, was used to prepare nematode DNA for PCR and sequencing analyses. The methods provided here, which involved digesting (resolving) a single nematode individual in a tube containing the mixed enzyme solution, enabled the DNA to be prepared within 20 min. The prepared DNA was suitable for PCR amplification of near-full-length small subunit ribosomal RNA (ca 1.7 kb), of the D2/D3 expansion segments of large subunit RNA (ca. 0.7 kb), and of partial mitochondrial COI (ca. 0.7 kb) genes, followed by sequencing analysis. Furthermore, the prepared material could be preserved in a freezer (?30 °C) for at least 20 months, and more than 300 PCR reactions could be performed from a single individual nematode.  相似文献   

15.
16.
B Goszczynski  J D McGhee 《Gene》1991,104(1):71-74
We propose a method to resolve ambiguities encountered when single-stranded (ss) phagemid DNA templates are sequenced by the dideoxy method. A single oligodeoxyribonucleotide (oligo) is synthesized with the following features: (i) the 20 nucleotides (nt) at the 5'-end form a double-stranded hairpin containing a FokI restriction site, exactly as previously described by Podhajska and Szybalski [Gene 40 (1985) 175-182]; (ii) the 23 nt at the 3'-end hybridize to the (+)strand of ss phagemid DNA in the region complementary to the M13 universal sequencing primer. In a simple one-tube set of reactions, ss phagemid DNA is annealed to this oligo, cleaved by FokI at a unique site outside the vector multiple cloning site and then labelled at this unique site by Klenow polymerase and [alpha-32P]dCTP. These reactions provide a convenient route by which Maxam-Gilbert chemical degradation sequencing methods can be used to resolve ambiguities encountered in the dideoxy-sequencing of a unidirectional deletion series already prepared in popular phagemid vectors. A single oligo allows labelling of all members of a deletion series. A second universal oligo allows the same set of reactions to be applied to inserts cloned into (-)strand phagemids.  相似文献   

17.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) has been explored widely for DNA sequencing. The major requirement for this method is that the DNA sequencing fragments must be free from alkaline and alkaline earth salts as well as other contaminants for accurately measuring the masses of the DNA fragments. We report here the development of a novel MS DNA sequencing method that generates Sanger-sequencing fragments in one tube using biotinylated dideoxynucleotides. The DNA sequencing fragments that carry a biotin at the 3′-end are made free from salts and other components in the sequencing reaction by capture with streptavidin-coated magnetic beads. Only correctly terminated biotinylated DNA fragments are subsequently released and loaded onto a mass spectrometer to obtain accurate DNA sequencing data. Compared with gel electrophoresis-based sequencing systems, MS produces a very high resolution of DNA-sequencing fragments, fast separation on microsecond time scales, and completely eliminates the compressions associated with gel electrophoresis. The high resolution of MS allows accurate mutation and heterozygote detection. This optimized solid-phase DNA-sequencing chemistry plus future improvements in detector sensitivity for large DNA fragments in MS instrumentation will further improve MS for DNA sequencing.  相似文献   

18.
DNA methylation is an important epigenetic modification that has essential roles in cellular processes including gene regulation, development and disease and is widely dysregulated in most types of cancer. Recent advances in sequencing technology have enabled the measurement of DNA methylation at single nucleotide resolution through methods such as whole-genome bisulfite sequencing and reduced representation bisulfite sequencing. In DNA methylation studies, a key task is to identify differences under distinct biological contexts, for example, between tumor and normal tissue. A challenge in sequencing studies is that the number of biological replicates is often limited by the costs of sequencing. The small number of replicates leads to unstable variance estimation, which can reduce accuracy to detect differentially methylated loci (DML). Here we propose a novel statistical method to detect DML when comparing two treatment groups. The sequencing counts are described by a lognormal-beta-binomial hierarchical model, which provides a basis for information sharing across different CpG sites. A Wald test is developed for hypothesis testing at each CpG site. Simulation results show that the proposed method yields improved DML detection compared to existing methods, particularly when the number of replicates is low. The proposed method is implemented in the Bioconductor package DSS.  相似文献   

19.
【目的】探讨适合DNA提取的天牛成虫标本保存方法。【方法】采用SDS-蛋白酶K消化法对液氮中冷冻保存、无水乙醇-20℃冷冻保存、无水乙醇室温保存和干标本室温保存且保存时间在2年以上的松墨天牛Monochamus alternates Hope成虫标本基因组DNA进行提取,并对不同保存方式提取的DNA样本进行了质量比较和分析。【结果】在上述常见的松墨天牛成虫标本4种保存方式中,以液氮中冷冻保存效果最佳,其次为无水乙醇-20℃冷冻保存,插针干标本室温保藏效果最差。利用昆虫线粒体基因CO I和CO II的通用引物从上述DNA中均能够成功扩增出目的片段,测序结果证实扩增片段符合预期。【结论】液氮和无水乙醇-20℃冷冻保存适合松墨天牛成虫标本长期保存,且不影响后续的PCR扩增和测序。  相似文献   

20.
Cycle sequencing is the workhorse of DNA sequencing projects, allowing the production of large amounts of product from relatively little template. This cycling regime, which is aimed at linear growth of the desired products, can also produce artifacts by exponential amplification of minor side-products. These artifacts can interfere with sequence determination. In an attempt to allow linear but prevent exponential growth of products, and thus eliminate artifacts, we have investigated the use of primers containing modified residues that cannot be replicated by DNA polymerase. Specifically, we have used primers containing 2'- O -methyl RNA residues or abasic residues. Oligomers consisting of six DNA residues and 20 2'- O -methyl RNA residues, with the DNA residues located at the 3'-end, primed as efficiently as DNA primers but would not support exponential amplification. Oligonucleotides containing fewer DNA residues were not used as efficiently as primers. DNA primers containing a single abasic site located six residues from the 3'-end also showed efficient priming ability without yielding exponential amplification products. Together these results demonstrate that certain types of modified primers can be used to eliminate artifacts in DNA sequencing. The technique should be particularly useful in protocols involving large numbers of cycles, such as direct sequencing of BAC and genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号