首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation.  相似文献   

2.
A mutant, USDA 206C, of Rhizobium fredii USDA 206 was obtained by passage on acridine plates. This mutant was cured of its 197-megadalton Sym plasmid but retained its symbiotic effectiveness. Multiple plasmid and chromosomally borne nif gene copies have previously been shown in R. fredii USDA 206. HindIII and EcoRI restriction enzyme digests of plasmid and total DNA showed that at least two nif gene copies are probably missing in USDA 206C. To compare the symbiotic effectiveness of USDA 206 and USDA 206C, plant tests were carried out. Statistically significant differences were obtained for nodule number, nodule mass, nitrogenase activity per plant, nitrogenase specific activity, and total plant dry weight. There was an apparent correlation between loss of Sym plasmidborne nif gene copies and reduction of overall symbiotic effectiveness. Delayed nodulation by strain USDA 206C relative to strain USDA 206 also indicated an association with the loss of plasmidborne nodulation functions and the reduced symbiotic effectiveness of strain USDA 206C.  相似文献   

3.
The rhcJ and ttsI mutants of Bradyrhizobium japonicum USDA122 for the type III protein secretion system (T3SS) failed to secrete typical effector proteins and gained the ability to nodulate Rj2 soybean plants (Hardee), which are symbiotically incompatible with wild-type USDA122. This suggests that effectors secreted via the T3SS trigger incompatibility between these two partners.  相似文献   

4.
Haemophilus parasuis, belonging to the family Pasteurellaceae, is the causative agent of Glässer’s disease leading to serious economic losses. In this study, a successive markerless mutation system for H. parasuis using two sequential steps of natural transformation was developed. By the first homologous recombination, the target genes were replaced by a cassette carrying kanamycin resistance gene and sacB (which confers sensitivity to sucrose) gene using kanamycin selection, followed by the second reconstruction to remove the selection cassette, with application of sucrose to further screen unmarked mutants. To improve DNA transformation frequency, several parameters have been analyzed further in this work. With this method, two unmarked deletions in one strain have been generated successfully. It is demonstrated that this system can be employed to construct multi-gene scarless deletions, which is of great help for developing live attenuated vaccines for H. parasuis.  相似文献   

5.
【目的】探究花生根瘤菌Bradyrhizobium sp.MM6的Ⅲ型分泌系统(T3SS)的结构及其在根瘤菌与不同宿主建立共生关系中的作用。【方法】同源比对分析菌株MM6的T3SS基因簇的结构特征,并采用三亲本接合转移的方法构建T3SS调节基因ttsI突变菌株;通过蛭石结瘤和石蜡切片实验,比较突变体与野生型的共生固氮表型差异。【结果】经预测,MM6的T3SS基因簇编码区长约34.1 kb,可分为3个区域,包含10个保守结构基因和8个效应蛋白基因,与B.diazoefficiens USDA110相应基因的序列相似性为83%–93%;成功构建了MM6的ttsI突变株;ttsI突变株与野生型分别与花生(S523和Y45)、野大豆和大豆中黄57结瘤,ttsI突变体在花生中的总瘤数显著增加(P<0.05),根瘤中含菌细胞更多;ttsI突变体在野大豆中平均每株植物增加4个根瘤,根瘤中含菌细胞更多,地上部干重相比野生型MM6显著增加(P<0.05);在大豆中黄57中,野生型MM6能形成红色的有效根瘤,ttsI突变体不结瘤,且植株叶片发黄,地上部干重相比野生型MM6显著降低(P<0.05)。【结论】MM6的T3SS在花生和野大豆共生体系中起着有害的作用,而在大豆中黄57的共生体系中起着有利的作用。  相似文献   

6.
Insertion sequence (IS) element ISRLdTAL1145-1 from Rhizobium sp. (Leucaena diversifolia) strain TAL 1145 was entrapped in the sacB gene of the positive selection vector pUCD800 by insertional inactivation. A hybridization probe prepared from the whole 2.5-kb element was used to determine the distribution of homologous sequences in a diverse collection of 135 Rhizobium and Bradyrhizobium strains. The IS probe hybridized strongly to Southern blots of genomic DNAs from 10 rhizobial strains that nodulate both Phaseolus vulgaris (beans) and Leucaena leucocephala (leguminous trees), 1 Rhizobium sp. that nodulates Leucaena spp., 9 R. meliloti (alfalfa) strains, 4 Rhizobium spp. that nodulate Sophora chrysophylla (leguminous trees), and 1 nonnodulating bacterium associated with the nodules of Pithecellobium dulce from the Leucaena cross-inoculation group, producing distinguishing IS patterns for each strain. Hybridization analysis revealed that ISRLdTAL1145-1 was strongly homologous with and closely related to a previously isolated element, ISRm USDA1024-1 from R. meliloti, while restriction enzyme analysis found structural similarities and differences between the two IS homologs. Two internal segments of these IS elements were used to construct hybridization probes of 1.2 kb and 380 bp that delineate a structural similarity and a difference, respectively, of the two IS homologs. The internal segment probes were used to analyze the structures of homologous IS elements in other strains. Five types of structural variation in homolog IS elements were found. The predominate IS structural type naturally occurring in a strain can reasonably identify the strain's cross-inoculation group relationships. Three IS structural types were found in Rhizobium species that nodulate beans and Leucaena species, one of which included the designated type IIB strain of R. tropici (CIAT 899). Weak homology to the whole IS probe, but not with the internal segments, was found with two Bradyrhizobium japonicum strains. The taxonomic and ecological implications of the distribution of ISRLdTAL1145-1 are discussed.  相似文献   

7.
Role for RAD18 in homologous recombination in DT40 cells   总被引:2,自引:0,他引:2       下载免费PDF全文
RAD18 is an E3 ubiquitin ligase that catalyzes the monoubiquitination of PCNA, a modification central to DNA damage bypass and postreplication repair in both yeast and vertebrates. Although current evidence suggests that homologous recombination provides an essential backup in vertebrate rad18 mutants, we show that in chicken DT40 cells this is not the case and that RAD18 plays a role in the recombination reaction itself. Gene conversion tracts in the immunoglobulin locus of rad18 cells are shorter and are associated with an increased frequency of deletions and duplications. rad18 cells also exhibit reduced efficiency of gene conversion induced by targeted double-strand breaks in a reporter construct. Blocking an early stage of the recombination reaction by disruption of XRCC3 not only suppresses immunoglobulin gene conversion but also prevents the aberrant immunoglobulin gene rearrangements associated with RAD18 deficiency, reverses the elevated sister chromatid exchange of the rad18 mutant, and reduces its sensitivity to DNA damage. Together, these data suggest that homologous recombination is toxic in the absence of RAD18 and show that, in addition to its established role in postreplication repair, RAD18 is also required for the orderly completion of gene conversion.  相似文献   

8.
The internally transcribed spacer (ITS) sequences of several members within each of 17 soybean bradyrhizobial serogroups were determined to establish whether the regions within all members of each serogroup were identical. The rationale was to provide a sequence-based alternative to serology. The objective also was to link the extensive older literature on soybean symbiosis based on serology with ITS sequence data for more recent isolates from both soybean and other legumes nodulated by rhizobia within the genus Bradyrhizobium. With the exception of serogroup 31 and 110 strains, sequence identity was established within each serogroup. Variation ranged from 0 to 23 nucleotides among serogroup 31 strains, and the regions in the type strains USDA 31 (serogroup 31) and USDA 130 (serogroup 130) were identical. Sequence identity was established among most strains within serogroup 110. The exceptions were USDA 452 and USDA 456, which had ITS sequences that were identical with those of the serotype 124 strain, USDA 124. Perhaps this would imply that USDA 452, USDA 456, and serogroup 31 strains are members of rhizobial lineages resulting from genetic exchange and homologous recombination events. This conclusion would be supported by the construction of a phylogenetic network from the ITS sequence alignment implying that the genomes of extant members of the genus Bradyrhizobium are likely the products of reticulate evolutionary events. A pairwise homoplasy index (phi or Φw) test was used to obtain further evidence for recombination. The ITS sequences of USDA 110 and USDA 124 were more divergent (53 nucleotides) than this region between the type strain Bradyrhizobium japonicum USDA 6T and the proposed species Bradyrhizobium yuanmingense (28 nucleotides) and Bradyrhizobium liaoningense (48 nucleotides). Therefore, support for assigning discrete species boundaries among these three proposed species appears limited, considering the evidence for recombination, the narrow divergence of the ITS sequence, and their relative placement on the phylogenetic network.  相似文献   

9.
A sacB mutant was obtained by transposon IS10 inactivation of a plasmid pXT3sacB carrying the sacB gene. Sequencing of this mutant plasmid DNA (GenBank accession No. AY580883.1) showed that the IS10 flanking the 22 bp inverted repeats were 5′-CTGAGAGATCCCCTCATAATTT-3′ and 5′-AAATCATTAGGGGATTCATCAG-3′, which were the similar to those published in reports previously. However, the target sequence adjacent to IS10 was 5′-TGCTTGGTT-3′ instead of the previously reported 5′-NGCTNAGCN-3′. To our knowledge, this is the first report on the novel insertion site of IS10. In addition, Southern blot hybridization confirmed that the mobile IS10 originated from the chromosomal DNA of the host strain Escherichia coli DH5α and that there were two copies in the DH5α genome.  相似文献   

10.
The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhizobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions before adopting this technology.  相似文献   

11.
The citrate utilization (Cit+) transposon Tn3411 was shown to be flanked by directly repeated sequences (IS3411L and IS3411R) by restriction enzyme analysis and electron microscope observation. Cit- deletion mutants were frequently found to be generated in pBR322::Tn3411 by intramolecular recombination between the two copies of IS3411. The flanking IS3411 elements of Tn3411 were shown to be functional insertion sequences by Tn3411-mediated direct and inverse transposition. Tn3411-mediated inverse transposition from pBR322::Tn3411 to the F-plasmid derivative pED100 occurred more efficiently than that of direct transposition of the Cit+ determinant. This was thought to be due to the differential transposability of IS3411L and IS3411R in the transposition process. The frequency of transposition of IS3411 marked with a chloramphenicol resistance determinant was much higher than IS3411-mediated cointegrate formation, suggesting that replicon fusions are not essential intermediates in the transposition process of Tn3411 or IS3411. Spontaneous deletions occurred with high frequency in recA hosts. The spontaneous deletion promoted by homologous recombination between two IS3411 elements in Tn3411 was examined with deletion mutants.  相似文献   

12.

Background

The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T.

Results

Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15.

Conclusions

Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-420) contains supplementary material, which is available to authorized users.  相似文献   

13.
Chen C  Fan C  Gao M  Zhu H 《Plant physiology》2009,149(1):306-317
Root symbioses with arbuscular mycorrhizal fungi and rhizobial bacteria share a common signaling pathway in legumes. Among the common symbiosis genes are CASTOR and POLLUX, the twin homologous genes in Lotus japonicus that encode putative ion channel proteins. Here, we show that the orthologs of CASTOR and POLLUX are ubiquitously present and highly conserved in both legumes and nonlegumes. Using rice (Oryza sativa) as a study system, we employ reverse genetic tools (knockout mutants and RNA interference) to demonstrate that Os-CASTOR and Os-POLLUX are indispensable for mycorrhizal symbiosis in rice. Furthermore, a cross-species complementation test indicates that Os-POLLUX can restore nodulation, but not rhizobial infection, to a Medicago truncatula dmi1 mutant.  相似文献   

14.
15.
Although Rhizobium japonicum nodulates Vigna unguiculata and Macroptilium atropurpurem, little is known about the physiology of these symbioses. In this study, strains of R. japonicum of varying effectiveness on soybean were examined. The nonhomologous hosts were nodulated by all the strains tested, but effectiveness was not related to that of the homologous host. On siratro, compared to soybean, many strains reversed their relative effectiveness ranking. Both siratro and cowpea produced more dry matter with standard cowpea rhizobia CB756 and 176A22 than with the strains of R. japonicum. Strains USDA33 and USDA74 were more effective with siratro and cowpea than with soybean. The strain USDA122 expressed high rates of hydrogenase activity in symbiosis with the cowpea as well as the soybean host. The strains USDA61 and USDA74 expressed low levels of hydrogenase activity in symbiosis with cowpea, but no activity was found with soybean. Our results indicate host influence for the expression of hydrogenase activity, and suggest the possibility of host influence of nitrogenase for the allocation of electrons to N2 and H+.  相似文献   

16.
We developed a simple method of generating markerless deletions in the Escherichia coli chromosome. The method consists of two recombination events stimulated by λ Red recombinase. The first recombination replaced a target region with a marker cassette and the second then eliminated the marker cassette. The marker cassette included an antibiotic resistant gene and a negative selection marker (Bacillus subtilis sacB). Since sacB makes E. coli sensitive to sucrose, a markerless deletion strain was successfully selected using its sucrose-resistant phenotype. To stimulate these recombination events, 1-kbp homologous sequences adjacent to the target region were connected to both ends of the marker cassette or connected to each other by PCR. The average efficiency of the recombinations was 24% and 93% respectively. Eliminating the marker cassette with a fragment including an additional sequence, insertion was also possible. This markerless deletion method should be useful in creating a highly modified E. coli chromosome.  相似文献   

17.
Summary Symbiotic and auxotrophic mutants of Rhizobium japonicum strain USDA191 were isolated using Tn5 mutagenesis and techniques that cause plasmid deletions and plasmid curing. Characterization of several mutants that are unable to nodulate (Nod-) or unable to fix nitrogen (Fix_) showed that nod and nif genes are located within one regions of a 200 MD plasmid (pSym191). Blot hybridization analysis of plasmids in other fast-growing R. japonicum strains showed that nod as well as nif sequences are located on plasmids in eight strains but are apparently carried in the chromosome in two strains.  相似文献   

18.
The two-step process of selection and counter-selection is a standard way to enable genetic modification and engineering of bacterial genomes using homologous recombination methods. The tetA and sacB genes are contained in a DNA cassette and confer a novel dual counter-selection system. Expression of tetA confers bacterial resistance to tetracycline (TcR) and also causes sensitivity to the lipophillic chelator fusaric acid; sacB causes sensitivity to sucrose. These two genes are introduced as a joint DNA cassette into Escherichia coli by selection for TcR. A medium containing both fusaric acid and sucrose has been developed, in which, coexpression of tetA-sacB is orders of magnitude more sensitive as a counter-selection agent than either gene alone. In conjunction with the homologous recombination methods of recombineering and P1 transduction, this powerful system has been used to select changes in the bacterial genome that cannot be directly detected by other counter-selection systems.  相似文献   

19.
We studied the activity of three multicopy insertion sequence (IS) elements in 12 populations of Lactococcus lactis IL1403 that evolved in the laboratory for 1000 generations under various environmental conditions (growth or starvation and shaken or stationary). Using RFLP analysis of single-clone representatives of each population, nine IS-mediated mutations were detected across all environmental conditions and all involving IS981. When it was assumed that these mutations were neutral, their frequency was higher under shaken than under stationary conditions, possibly due to oxygen stress. We characterized seven of the nine mutations at the molecular level and studied their population dynamics where possible. Two were simple insertions into new positions and the other five were recombinational deletions (of <1->10 kb) among existing and new copies of IS981; in all but one case these mutations disrupted gene functions. The best candidate beneficial mutations were two deletions of which similar versions were detected in two populations each. One of these two parallel deletions, affecting a gene involved in bacteriophage resistance, showed intermediate rearrangements and may also have resulted from increased local transposition rates.  相似文献   

20.
Site-directed mutagenesis of the photosynthetic apparatus (PSA) genes in Rhodopseudomonas capsulata is presented utilizing a transposon Tn7 mutagenized R-prime. The R-prime, pRPS404, bears most of the genes necessary for the differentiation of the photosynthetic apparatus. Mutagenesis of the R-prime with Tn7 in Escherichia coli, conjugation into R. capsulata, and homologous recombination with the wild-type alleles efficiently generates photosynthetic apparatus lesions. Wild-type alleles are lost spontaneously and the Tn7-induced lesions are revealed by subsequent intramolecular recombination between IS21 insertion elements that bracket the prime sequences in direct repeat. The molecular nature of the intermediates involved in the transposition, recombination and deletion have been investigated by Southern hybridization analysis. The spontaneous loss of wild-type alleles after homologous recombination with the chromosome may be of general use to other prokaryotic site-directed transposon mutagenesis schemes. The IS21-mediated deletion of the prime DNA is dependent on the RecA protein in E. coli, generating the parental R-factor bearing one IS21 element.A genetic-physical map exists for a portion of the prime photosynthetic apparatus DNA. When Tn7 is inserted into a bacteriochlorophyll gene in the Rprime and then crossed into R. capsulata, mutants are produced that accumulate a bacteriochlorophyll precursor, which is in excellent agreement with the existing genetic-physical map. This corroborates our mutagenesis scheme. Mutants arising from Tn7 insertions outside of the genetic map have been isolated. Light harvesting II mutations have been isolated; one mutant lacks only the 14,000 Mr, polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号