首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung fluid accumulation was determined using wet/dry lung mass ratio. Rats subjected to LPS-induced acute lung injury (2.8 ± 0.33, P < 0.05) presented with a significantly higher wet to dry lung weight ration ratio than sham rats (1.6 ± 0.23, P < 0.05). These results demonstrate that acutely inured rats' lungs were oedematous. On the other hand, treatment with scutellarin alone and in combination with a JNK inhibitor, SP600125, both significantly attenuated pulmonary edema as shown via reduced wet/dry lung mass ratios (1.7 ± 0.09 and 1.8 ± 0.23; P < 0.05, respectively). These results showed that the interventions were effective against LPS-induced edema of the lungs. However, the difference between treatment groups' weight ratios was not statistically significant (P > 0.05). In the sham control rats, the levels of ROS and SOD production were maintained at a low and at a high concentration, respectively (P < 0.05). However, following LPS infusion, the ROS levels skyrocketed while that of SOD decreased significantly relative to the control rats (P < 0.05). Furthermore, we noted that pre-treatment with scutellarin reduced the ROS levels in LPS-injured rats while the SOD was increased to near control levels (P < 0.05). Moreover, the combined effect of scutellarin and JNK inhibitor SP600125 on the levels of ROS and the SOD activity followed a similar trend to that of scutellarin alone albeit with a lower magnitude of change. Our results also showed that the combinatorial treatment was not significantly different from scutellarin alone in terms of influence on the levels of ROS production and SOD activity (P > 0.05). The effect of Scutellarin on broncho-alveolar lavage fluid (BALF) cytokine secretion The expression of interleukins-1β, ?18 and ?6 in the broncho-alveolar lavage fluid were significantly upregulated by LPS infusion (P < 0.05). The rise was, however, attenuated via pre-treatment with scutellarin only or in conjunction with SP600125, a JNK inhibitor (all P < 0.05). On the contrary, we observed that LPS injection caused a reduction of interlekins ?4 and ?10 secreted in the BALF. Pre-treatment with scutellarin alone (P < 0.05) and not in combination with SP600125 or SP600125 was able to significantly reverse this noted down-regulation (all P > 0.05).  相似文献   

2.
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (−13±17% and −10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (−24±13% and −26±19%, P<0.01) with alteration of the central activation ratio (−24±24% and −28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: −18±18% and PF: −20±15%, P<0.01) and peak twitch (KE: −33±12%, P<0.001 and PF: −19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·1), lactate dehydrogenase (1145±511 UI·L−1), C-Reactive Protein (13.1±7.5 mg·L−1) and myoglobin (449.3±338.2 µg·L−1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.  相似文献   

3.

Background

Tumor necrosis factor related apoptosis inducing ligand (TRAIL) as a member of the TNF gene superfamily induces apoptosis primarily in tumor cells. TRAIL also plays an important role in the modulation of inflammatory responses, especially in the process of immune paralysis. The aim of the present study was to examine soluble TRAIL (sTRAIL) levels in septic patients in an attempt to explore the association between sTRAIL level and the risk of mortality.

Methods

Plasma sTRAIL levels were detected by ELISA in 50 septic patients and 20 healthy volunteers. HLA-DR expression in monocytes was detected by flow cytometry. Selective biochemical parameters were recorded, and patients were monitored in a 28-day period for mortality.

Results

The mean plasma sTRAIL level in septic patients was significantly lower than that in healthy controls (16.9±8.3 vs. 68.3±8.6 pg/ml, P<0.01), and was significantly higher in 28-day survivors than those in non-survivors (19.4±9.8 vs. 13.9±4.7 pg/ml, P<0.05). Univariate analysis indicated that plasma sTRAIL level was positively correlated with monocyte and lymphocyte counts and HLA-DR expression level (r = 0.5, P<0.01; r = 0.3, P<0.05; r = 0.43, P<0.01, respectively). STRAIL level was negatively correlated with APACHE II score, BUN and age (r = −0.48, P<0.01; r = −0.29, P<0.05; r = −0.45, P<0.01, respectively). Multiple linear regression analysis indicated that the predictor of plasma soluble TRAIL level was HLA-DR expression (P<0.01).

Conclusion

Low plasma sTRAIL levels were associated with immune paralysis and a high risk of mortality in patients with septic shock. sTRAIL may prove to be a potential biomarker of immune function and predict the survival of septic patients.  相似文献   

4.
Angiogenesis is one of the most important processes for normal lung development. Oxidative stress can impair the pulmonary angiogenesis, leading to chronic lung disease or Bronchopulmonary dysplasia (BPD).

Objective

To investigate the protective effects of EC-SOD overexpression on pulmonary angiogenesis on neonates following exposure to acute hyperoxia.

Design/Methods

Transgenic (TG) and wild-type (WT) neonatal mice (10 mice per group) were exposed either to air (control group) or 95% O2 for 7 days starting at birth. After exposure, all animals were sacrificed. ROS concentration was measured in lung homogenates using OxiSelect ROS assay kit. Mean vascular density (MVD) was measured using anti CD34 staining. RNA was extracted and the angiogenesis markers, VEGF, VEGFR1 and VEGFR2 and PECAM-1 were analyzed by RT-q PCR. VGEF protein was measured using Western blots. Endothelial progenitor cells (EPCs) was assayed by flow cytometer.

Results

There was a significant reduction of ROS in TG hyperoxic neonate group (156±14.2) compared to WT hyperoxic animals (255±35.1). Evaluation of MVD, using anti-CD34, showed marked significant increase of MVD in the TG group following hyperoxic exposure (85±12) in comparison to the WT hyperoxic group (62±8.4), (P<0.05). Among the hyperoxic groups, both RNA and protein of VEGF expression were significantly reduced in the WT animals compared to the TG group (P<0.05). The same trend was found in VEGFR 1 and 2 which were significantly reduced in WT group compared to the TG group (P<0.05). There was no significant difference between hyperoxia TG and control group (P>0.05). PECAM expression was significantly reduced in both hyperoxic compared to normoxic groups (P<0.05). EPC’s showed significant reduction in WT hyperoxic group compared to others (P>0.05).

Conclusions

EC-SOD plays a key role in preserving angiogenesis by scavenging free radicals which has an inhibitory effect on angiogenesis process in neonatal mice lung following exposure to hyperoxia.  相似文献   

5.

Background

Hematopoietic stem cells mobilize to the peripheral circulation in response to stroke. However, the mechanism by which the brain initiates this mobilization is uncharacterized.

Methods

Animals underwent a murine intraluminal filament model of focal cerebral ischemia and the SDF1-A pathway was evaluated in a blinded manner via serum and brain SDF1-A level assessment, Lin−/Sca1+ cell mobilization quantification, and exogenous cell migration confirmation; all with or without SDF1-A blockade.

Results

Bone marrow demonstrated a significant increase in Lin−/Sca1+ cell counts at 24 hrs (272±60%; P<0.05 vs sham). Mobilization of Lin−/Sca1+ cells to blood was significantly elevated at 24 hrs (607±159%; P<0.05). Serum SDF1-A levels were significant at 24 hrs (Sham (103±14), 4 hrs (94±20%, p = NS) and 24 hrs (130±17; p<0.05)). Brain SDF1-A levels were significantly elevated at both 4 hrs and 24 hrs (113±7 pg/ml and 112±10 pg/ml, respectively; p<0.05 versus sham 76±11 pg/ml). Following administration of an SDF1-A antibody, Lin−/Sca1+ cells failed to mobilize to peripheral blood following stroke, despite continued up regulation in bone marrow (stroke bone marrow cell count: 536±65, blood cell count: 127±24; p<0.05 versus placebo). Exogenously administered Lin−/Sca1+ cells resulted in a significant reduction in infarct volume: 42±5% (stroke alone), versus 21±15% (Stroke+Lin−/Sca1+ cells), and administration of an SDF1-A antibody concomitant to exogenous administration of the Lin−/Sca1+ cells prevented this reduction. Following stroke, exogenously administered Lin−/Sca1+ FISH positive cells were significantly reduced when administered concomitant to an SDF1-A antibody as compared to without SDF1-A antibody (10±4 vs 0.7±1, p<0.05).

Conclusions

SDF1-A appears to play a critical role in modulating Lin−/Sca1+ cell migration to ischemic brain.  相似文献   

6.
Our aim was to assess the timing and mechanisms of the sympathoexcitation that occurs immediately after coronary ligation. We recorded thoracic sympathetic (tSNA) and phrenic activities, heart rate (HR) and perfusion pressure in Wistar rats subjected to either ligation of the left anterior descending coronary artery (LAD) or Sham operated in the working heart-brainstem preparation. Thirty minutes after LAD ligation, tSNA had increased (basal: 2.5±0.2 µV, 30 min: 3.5±0.3 µV), being even higher at 60 min (5.2±0.5 µV, P<0.01); while no change was observed in Sham animals. HR increased significantly 45 min after LAD (P<0.01). Sixty minutes after LAD ligation, there was: (i) an augmented peripheral chemoreflex – greater sympathoexcitatory response (50, 45 and 27% of increase to 25, 50 and 75 µL injections of NaCN 0.03%, respectively, when compared to Sham, P<0.01); (ii) an elevated pressor response (32±1 versus 23±1 mmHg in Sham, P<0.01) and a reduced baroreflex sympathetic gain (1.3±0.1 versus Sham 2.0±0.1%.mmHg−1, P<0.01) to phenylephrine injection; (iii) an elevated cardiac sympathetic tone (ΔHR after atenolol: −108±8 versus −82±7 bpm in Sham, P<0.05). In contrast, no changes were observed in cardiac vagal tone and bradycardic response to both baroreflex and chemoreflex between LAD and Sham groups. The immediate sympathoexcitatory response in LAD rats was dependent on an excitatory spinal sympathetic cardiocardiac reflex, whereas at 3 h an angiotensin II type 1 receptor mechanism was essential since Losartan curbed the response by 34% relative to LAD rats administered saline (P<0.05). A spinal reflex appears key to the immediate sympathoexcitatory response after coronary ligation. Therefore, the sympathoexcitatory response seems to be maintained by an angiotensinergic mechanism and concomitant augmentation of sympathoexcitatory reflexes.  相似文献   

7.
This study investigated the effects of obesity and ambient temperature on physiological responses and markers of oxidative stress to submaximal exercise in obese and lean people. Sixteen healthy males were divided into an obese group (n=8, %fat: 27.00±3.00%) and a lean group (n=8, %fat: 13.85±2.45%). Study variables were measured during a 60 min submaximal exercise test at 60% VO2max in a neutral (21±1°C) and a cold (4±1°C) environment. Heart rate, blood lactate, rectal temperature, serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured at rest, during exercise and in recovery. Heart rate of both groups was significantly lower (P<0.05) in the cold than the warm environment, but there were no significant differences between the two groups. Serum SOD activity increased to a significantly greater extent (P<0.05) in the cold than the neutral environment, and remained elevated for longer during exercise in the obese group than the lean group. Serum MDA level during submaximal exercise was not significantly different between conditions or groups. Cold stress in exercise may challenge antioxidant defence mechanisms in obese subjects, but lipid peroxidation remains unchanged.  相似文献   

8.
Physical exercise is the cornerstone of cardiovascular disease treatment. The present study investigated whether exercise training affects atherosclerotic plaque composition through the modification of inflammatoryrelated pathways in apolipoprotein E knockout (apoE−/−) mice with diabetic atherosclerosis. Forty-five male apoE−/− mice were randomized into three equivalent (n=15) groups: control (CO), sedentary (SED), and exercise (EX). Diabetes was induced by streptozotocin administration. High-fat diet was administered to all groups for 12 weeks. Afterwards, CO mice were euthanatized, while the sedentary and exercise groups continued high-fat diet for 6 additional weeks. Exercising mice followed an exercise program on motorizedtreadmill (5 times/week, 60 min/session). Then, blood samples and atherosclerotic plaques in the aortic root were examined. A considerable (P<0.001) regression of the atherosclerotic lesions was observed in the exercise group (180.339±75.613×103µm2) compared to the control (325.485±72.302×103 µm2) and sedentary (340.188±159.108×103µm2) groups. We found decreased macrophages, matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-8 and interleukin-6 (IL-6) concentrations (P<0.05) in the atherosclerotic plaques of the exercise group. Compared to both control and sedentary groups, exercise training significantly increased collagen (P<0.05), elastin (P<0.001), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) (P<0.001) content in the atherosclerotic plaques. Those effects paralleled with increased fibrous cap thickness and less internal elastic lamina ruptures after exercise training (P<0.05), while body-weight and lipid parameters did not significantly change. Plasma MMP-2 and MMP-3 concentrations in atherosclerotic tissues followed a similar trend. From our study we can conclude that exercise training reduces and stabilizes atherosclerotic lesions in apoE−/− mice with diabetic atherosclerosis. A favorable modification of the inflammatory regulators seems to explain those beneficial effects.Key words: diabetes, atherosclerosis, exercise, matrix metalloproteinases, plaque stability.  相似文献   

9.
Introduction: The correlation between alveolar nitric oxide (CANO) and the severity of interstitial lung disease (ILD) evaluated by high resolution computed tomography (HRCT) has not been well demonstrated. Methods: It was a perspective and observational study, including patients with diagnosed systemic sclerosis (SSc). They performed lung function testing (LFT), exhaled nitric oxide (NO) measurements, exercise testing, chest X-ray, and HRCT. Study patients were divided into SSc with ILD (SSc-ILD+) or without ILD (SSc-ILD-). SSC-ILD+ patients were revisited after 6 months and 12 months to complete the study. Results: Thirty-one control subjects and 74 patients with SSc (33 SSc-ILD- and 41 SSc-ILD+) were included. Forty-one SSc-ILD+ patients were followed-up at 6 months and 12 months. Lung functional parameters of patients with SSc-ILD+ were lower than that of SSc-ILD- patients. The level of CANO was significantly higher in SSc-ILD+ than SSc-ILD- patients (8.6 ± 2.5 vs 4.2 ± 1.3 ppb and P<0.01). Warrick and Goldin scores of patients with SSc-ILD+ were respectively 16.5 ± 5.2 and 12.7 ± 4.3. Warrick scores were reduced after 6 and 12 months of follow-up vs at inclusion (12.4 ± 4.3 and 9.1 ± 3.2 vs 16.5 ± 5.2; P<0.05, P<0.01, and P<0.05; respectively). ΔWarrick and ΔGoldin scores were significantly and inversely correlated with ΔFVC, ΔTLC, ΔTLCO, ΔVO2 max; that was also correlated with ΔCANO (R= 0.783, P<0.01 and R= 0.719 and P<0.05). Conclusion: CANO is a relevant biomarker for the diagnosis of ILD in patients with SSc, especially in combination with HRCT.  相似文献   

10.
Cancer cachexia is a wasting condition, driven by systemic inflammation and oxidative stress. This study investigated eicosapentaenoic acid (EPA) in combination with oxypurinol as a treatment in a mouse model of cancer cachexia. Mice with cancer cachexia were randomized into 4 treatment groups (EPA (0.4 g/kg/day), oxypurinol (1 mmol/L ad-lib), combination, or control), and euthanized after 29 days. Analysis of oxidative damage to DNA, mRNA analysis of pro-oxidant, antioxidant and proteolytic pathway components, along with enzyme activity of pro- and antioxidants were completed on gastrocnemius muscle. The control group displayed earlier onset of tumor compared to EPA and oxypurinol groups (P<0.001). The EPA group maintained body weight for an extended duration (20 days) compared to the oxypurinol (5 days) and combination (8 days) groups (P<0.05). EPA (18.2±3.2 pg/ml) and combination (18.4±3.7 pg/ml) groups had significantly higher 8-OH-dG levels than the control group (12.9±1.4 pg/ml, P≤0.05) indicating increased oxidative damage to DNA. mRNA levels of GPx1, MURF1 and MAFbx were higher following EPA treatment compared to control (P≤0.05). Whereas oxypurinol was associated with higher GPx1, MnSOD, CAT, XDH, MURF1, MAFbx and UbB mRNA compared to control (P≤0.05). Activity of total SOD was higher in the oxypurinol group (32.2±1.5 U/ml) compared to control (27.0±1.3 U/ml, P<0.01), GPx activity was lower in the EPA group (8.76±2.0 U/ml) compared to control (14.0±1.9 U/ml, P<0.05), and catalase activity was lower in the combination group (14.4±2.8 U/ml) compared to control (20.9±2.0 U/ml, P<0.01). There was no change in XO activity. The increased rate of weight decline in mice treated with oxypurinol indicates that XO may play a protective role during the progression of cancer cachexia, and its inhibition is detrimental to outcomes. In combination with EPA, there was little significant improvement from control, indicating oxypurinol is unlikely to be a viable treatment compound in cancer cachexia.  相似文献   

11.
Hyperlipidemic apolipoprotein E (APOE) knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX) on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001), leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001) and an increased spleen weight (P<0.01). FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01). T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05), which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05) TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001) in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL) as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05). In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins.  相似文献   

12.

Aims

Currently, there is no effective resuscitative adjunct to fluid and blood products to limit tissue injury for traumatic hemorrhagic shock. The objective of this study was to investigate the role of inhaled carbon monoxide (CO) to limit inflammation and tissue injury, and specifically mitochondrial damage, in experimental models of hemorrhage and resuscitation.

Results

Inhaled CO (250 ppm for 30 minutes) protected against mortality in severe murine hemorrhagic shock and resuscitation (HS/R) (20% vs. 80%; P<0.01). Additionally, CO limited the development of shock as determined by arterial blood pH (7.25±0.06 vs. 7.05±0.05; P<0.05), lactate levels (7.2±5.1 vs 13.3±6.0; P<0.05), and base deficit (13±3.0 vs 24±3.1; P<0.05). A dose response of CO (25–500 ppm) demonstrated protection against HS/R lung and liver injury as determined by MPO activity and serum ALT, respectively. CO limited HS/R-induced increases in serum tumor necrosis factor-α and interleukin-6 levels as determined by ELISA (P<0.05 for doses of 100–500ppm). Furthermore, inhaled CO limited HS/R induced oxidative stress as determined by hepatic oxidized glutathione:reduced glutathione levels and lipid peroxidation. In porcine HS/R, CO did not influence hemodynamics. However, CO limited HS/R-induced skeletal muscle and platelet mitochondrial injury as determined by respiratory control ratio (muscle) and ATP-linked respiration and mitochondrial reserve capacity (platelets).

Conclusion

These preclinical studies suggest that inhaled CO can be a protective therapy in HS/R; however, further clinical studies are warranted.  相似文献   

13.

Background

Obstructive sleep apnea (OSA) has deteriorating effect on LV function, whereas its impact on RV function is controversial. We aimed to determine the effect of OSA and continuous positive airway pressure (CPAP) treatment on left and right ventricular (LV, RV) function using transthoracic echocardiography (TTE) and 2 dimensional speckle tracking (2D ST) analysis of RV deformation capability.

Methods and Results

82 patients with OSA and need for CPAP therapy were prospectively enrolled and underwent TTE at study inclusion and after 6 months of follow up (FU). Multivariate regression analysis revealed an independent association between baseline apical right ventricular longitudinal strain (RV-Sl), BMI and the severity of OSA (apical RV-Sl: P = 0.0002, BMI: P = 0.02). After CPAP therapy, LV functional parameters (LVEF: P<0.0001, LV performance index: P = 0.03, stroke volume: P = 0.042), and apical RV-Sl (P = 0.001) improved significantly. The effect of CPAP therapy was related to severity of OSA (LVEF: AHI 5–14, 66.4±8.8%, 68.5±10.6% [P = ns]; AHI 15–30∶59.8±7.7%, 68.6±9.3% [P = 0.002]; AHI>30∶54.1±12.4%, 68.2±13.6%[P<0.0001]; apical RV-Sl: AHI 5–14: −17.3±8.7%, −16.0±10.8% [P = ns], AHI 15–30: −9.8±6.0%, −15.4±10.9% [P = 0.028], AHI>30: −6.3±5.7%, −17.9±11.2% [P<0.0001]).

Conclusions

OSA seems to have deteriorating effect on LV and RV function. We found a beneficial effect of CPAP on LV and RV functional parameters predominately in patients with severe OSA. 2D speckle tracking might be of value to determine early changes in global and regional right ventricular function.  相似文献   

14.
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.  相似文献   

15.

Rationale

Smoking-induced chronic obstructive pulmonary disease (COPD) is associated with acquired systemic cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Recently, sweat evaporimetry has been shown to efficiently measure β-adrenergic sweat rate and specifically quantify CFTR function in the secretory coil of the sweat gland.

Objectives

To evaluate the presence and severity of systemic CFTR dysfunction in smoking-related lung disease using sweat evaporimetry to determine CFTR-dependent sweat rate.

Methods

We recruited a cohort of patients consisting of healthy never smokers (N = 18), healthy smokers (12), COPD smokers (25), and COPD former smokers (12) and measured β-adrenergic sweat secretion rate with evaporative water loss, sweat chloride, and clinical data (spirometry and symptom questionnaires).

Measurements and main results

β-adrenergic sweat rate was reduced in COPD smokers (41.9 ± 3.4, P < 0.05, ± SEM) and COPD former smokers (39.0 ± 5.4, P < 0.05) compared to healthy controls (53.6 ± 3.4). Similarly, sweat chloride was significantly greater in COPD smokers (32.8 ± 3.3, P < 0.01) and COPD former smokers (37.8 ± 6.0, P < 0.01) vs. healthy controls (19.1 ± 2.5). Univariate analysis revealed a significant association between β-adrenergic sweat rate and female gender (β = 0.26), age (−0.28), FEV1% (0.35), dyspnea (−0.3), and history of smoking (−0.27; each P < 0.05). Stepwise multivariate regression included gender (0.39) and COPD (−0.43) in the final model (R2 = 0.266, P < 0.0001).

Conclusions

β-adrenergic sweat rate was significantly reduced in COPD patients, regardless of smoking status, reflecting acquired CFTR dysfunction and abnormal gland secretion in the skin that can persist despite smoking cessation. β-adrenergic sweat rate and sweat chloride are associated with COPD severity and clinical symptoms, supporting the hypothesis that CFTR decrements have a causative role in COPD pathogenesis.  相似文献   

16.

Purpose

To examine a potential association between intraocular pressure (IOP) and cerebrospinal fluid pressure (CSFP) in a population-based setting.

Methods

The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years (range: 50–93 years). A detailed ophthalmic examination was performed. Based on a previous study with lumbar cerebrospinal fluid pressure (CSFP) measurements, CSFP was calculated as CSFP [mm Hg] = 0.44×Body Mass Index [kg/m2]+0.16×Diastolic Blood Pressure [mm Hg]–0.18×Age [Years].

Results

In multivariate analysis, IOP was associated with higher estimated CSFP (P<0.001; standardized correlation coefficient beta: 0.27; regression coefficient B: 0.20; 95% confidence interval (CI): 0.16, 0.24), after adjusting for thinner central corneal thickness (P<0.001; beta: 0.45; B: 0.04;95%CI: 0.04,0.04), smaller corneal curvature radius (P<0.001; beta:−0.11; B:−1.13;95%CI:−1.61,−0.64), shallower anterior chamber depth (P = 0.01; beta:−0.05; B:−0.33;95%CI:−0.59,−0.08) and longer axial length (P = 0.002; beta: 0.08; B: 0.20;95%CI: 0.08,0.32)), and after adjusting for the systemic parameters of higher pulse rate (P<0.001; beta: 0.08; B: 0.02;95%CI: 0.01,0.03), higher prevalence of arterial hypertension (P = 0.002; beta: 0.06; B: 0.32;95%CI: 0.12,0.53)), frequency of drinking alcohol (P = 0.02; beta: 0.04; B: 0.09;95%CI: 0.01,0.17), higher blood concentration of triglycerides (P = 0.001; beta: 0.06; B: 0.06;95%CI: 0.02,0.10) and cholesterol (P = 0.049; beta: 0.04; B: 0.08;95%CI: 0.00,0.17), and body mass index (P<0.001; beta:−0.13; B:−0.09;95%CI:−0.13,−0.06). In a parallel manner, estimated CSFP (mean: 10.8±3.7 mm Hg) was significantly associated with higher IOP (P<0.001; beta: 0.13; B: 0.18;95%CI: 0.13,0.23) after adjusting for rural region of habitation (P<0.001; beta:−0.37; B:−2.78;95%CI:−3.07,−2.48), higher systolic blood pressure (P<0.001; beta: 0.34; B: 0.06;95%CI: 0.05,0.07), higher pulse rate (P = 0.003; beta: 0.05; B: 0.02;95%CI: 0.01,0.03), taller body height (P<0.001; beta: 0.11; B: 0.05;95%CI: 0.03,0.07), higher blood concentration of cholesterol (P = 0.003; beta: 0.05; B: 0.17;95%CI: 0.06,0.28) and higher level of education (P = 0.003; beta: 0.09; B: 0.30;95%CI: 0.16,0.45).

Conclusions

IOP was positively associated with estimated CSFP after adjusting for other ocular and systemic parameters. As a corollary, higher estimated CSFP was significantly associated with higher IOP in multivariate analysis. It fits with the notion that the arterial blood pressure, estimated CSFP and IOP are physiologically correlated with each other.  相似文献   

17.

Background

[18F]-fluorodeoxyglucose (FDG) has been suggested for the clinical and experimental imaging of inflammatory atherosclerotic lesions. Significant FDG uptake in brown adipose tissue (BAT) has been observed both in humans and mice. The objective of the present study was to investigate the influence of periaortic BAT on apolipoprotein E-deficient (apoE−/−) mouse atherosclerotic lesion imaging with FDG.

Methods

ApoE−/− mice (36±2 weeks-old) were injected with FDG (12±2 MBq). Control animals (Group A, n = 7) were injected conscious and kept awake at room temperature (24°C) throughout the accumulation period. In order to minimize tracer activity in periaortic BAT, Group B (n = 7) and C (n = 6) animals were injected under anaesthesia at 37°C and Group C animals were additionally pre-treated with propranolol. PET/CT acquisitions were performed prior to animal euthanasia and ex vivo analysis of FDG biodistribution.

Results

Autoradiographic imaging indicated higher FDG uptake in atherosclerotic lesions than in the normal aortic wall (all groups, P<0.05) and the blood (all groups, P<0.01) which correlated with macrophage infiltration (R = 0.47; P<0.001). However, periaortic BAT uptake was either significantly higher (Group A, P<0.05) or similar (Group B and C, P = NS) to that observed in atherosclerotic lesions and was shown to correlate with in vivo quantified aortic FDG activity.

Conclusion

Periaortic BAT FDG uptake was identified as a confounding factor while using FDG for the non-invasive imaging of mouse atherosclerotic lesions.  相似文献   

18.
This study was conducted to investigate the effect of different levels of seminal plasma (SP) and cold-shock on ram spermatozoa during 36 h storage at 5°C. In both ejaculated spermatozoa coated with egg yolk (second ejaculate; coated spermatozoa) and epididymal spermatozoa, samples were treated with 0, 50 and 100% seminal plasma. Different levels of seminal plasma were added on the basis of ram spermatocrit (32%). Then half of aliquots were suddenly put on ice water (cold-shock) and other half were gradually (0.25°C/min) chilled (non- cold shock). Sperm motility, viability and functional membrane integrity were determined in both aliquots at 0, 12, 24 and 36 h storage at 5°C. Under non- cold shock and cold-shock conditions, coated spermatozoa treated with 0% SP showed the highest motility compared to ejaculated spermatozoa (first ejaculate; uncoated spermatozoa) after 12, 24 and 36 h of storage at 5°C (P<0.05). Under non- cold shock and cold-shock conditions, viability and functional membrane integrity was higher in the coated spermatozoa treated with 0% SP than in the uncoated spermatozoa during 36 h storage (P<0.05). There was no significant difference between coated spermatozoa treated with 0 and 50% SP in the percentage of motility and viability after 24 and 36 h of storage (P>0.05). Under non- cold shock and cold-shock conditions, the percentage of motility of epididymal spermatozoa treated with 0% SP was significantly (P<0.05) higher than those treated with 100% SP after 36 h of storage at 5°C. In conclusion, removal of seminal plasma and/or reduction (up to 50%) of its concentration can decrease detrimental effects of seminal plasma on chilled ram spermatozoa.  相似文献   

19.

Objectives

To evaluate whether inter-arm diastolic blood pressure difference (DBPl-r) induced by one arm ischemia correlates with flow-mediated dilatation (FMD).

Methods

Bilateral arm BPs were simultaneously measured with two automatic devices and right brachial artery diameter (D) was measured by ultrasound technique in 108 subjects (56 hypertensives and 52 normotensives). Following baseline diameter (D0) and BP measurement, right brachial artery was occluded for 5 minutes. The diameter was measured at 1, 1.5 and 2 min, and bilateral BPs measured at 3, 4 and 5 min after occlusion release. Their averages were recorded as post-D and post-BP, respectively. The difference between post-D and D0 (ΔD) was calculated as the percentage increase of artery diameter (ΔD/D0). The BP difference between left and right arms was calculated as BPl-r, and the difference of post- BPl-r and baseline BPl-r was recorded as the net change of BPl-r (ΔBPl-r).

Results

At baseline, bilateral SBPs and DBPs were similar. Right arm ischemia induced significant DBP decline only in the right arm (68.8±12.7 vs 72.6±12.0 mmHg, P<0.05), which led to an increase of ΔDBPl-r (4.00±3.75 vs 0.78±4.47 mmHg, P<0.05). A positive correlation was seen between ΔD/D0 and ΔDBPl-r (r = 0.744, p<0.001). Furthermore, the correlation between age and ΔDBPl-r (r = −0.358, P<0.01) was similar to that between age and D/D0 (r = −0.398, P<0.01). Meanwhile, both ΔDBPl-r and ΔD/D0 were significantly lower in hypertensive patients than in normotensive patients.

Conclusion

The inter-arm DBP difference induced by one arm ischemia may be a potential index for clinical evaluation of vascular endothelial function.  相似文献   

20.

Background and Purpose

Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain.

Methods

Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach.

Results

Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures.

Conclusions

In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号