首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By targeting multi-active sites of acetylcholinesterase (AChE), a series of huperzine A (Hup A) derivatives with various aromatic ring groups were designed and synthesized by Schiff reaction. They were evaluated as AChE and butyrylcholinesterase (BChE) inhibitors. Results showed very significant specificity that the group of imine derivatives could inhibit TcAChE and hAChE, but no inhibitory effect on hBChE was detected. The experiment was explained by a docking study. In the docking model, we confirmed that aromatic ring of Hup A derivatives played the π–π stacking against aminophenol residues of AChE, and the structure–activity relationship (SAR) was discussed.  相似文献   

2.
The ultrastructural localization of the enzyme acetylcholinesterase (AChE) in the ocellus of the honey bee (Apis mellifica) was studied by electron microscopy. High AChE activity was found both in the receptor-cell axons and in the surrounding glial cells. Second order neurones exhibited a remarkably lower anzyme activity. AChE was also detected in the intercellular spaces between the receptor-cell axons and the second order neurones. These results provide additional support to the assumed cholinergic nature of the photoreceptor cells in the insect ocellus.  相似文献   

3.
A Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE) was constructed and its bioactivity was studied. The modified Bombyx mori acetylcholinesterase gene (bmace) was fused with the anchor protein (AGα1) from Saccharomyces cerevisiae and transformed into P. pastoris strain GS115. The recombinant strain harboring the fusion gene bmace-AGα1 was induced to display BmAChE on the P. pastoris cell surface. Fluorescence microscopy and flow cytometry assays revealed that the BmAChE was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity of the displayed BmAChE was detected by the Ellman method at 787.7 U/g (wet cell weight). In addition, bioactivity of the displayed BmAChE was verified by inhibition tests conducted with eserine, and with carbamate and organophosphorus pesticides. The displayed BmAChE had an IC50 of 4.17×10−8 M and was highly sensitive to eserine and five carbamate pesticides, as well as seven organophosphorus pesticides. Results suggest that the displayed BmAChE had good bioactivity.  相似文献   

4.
Pisum sativum seeds contain a conserved acetylcholinesterase (AChE) which is active during the early stages of germination. The enzyme activity soon disappears and reappears after 72 hr of germination. A protein devoid of catalytic ability, but exhibiting similar chromatographic and electrophoretic properties as the active AChE, could be detected after 24 hr of germination. The pattern of incorporation of labelled amino acids into AChE and the influence of cycloheximide revealed that the AChE found in the roots from 72 hr onwards was entirely new. During this period of growth, the AChE protein accounts for 4–10% of the total proteins in the root tissue.  相似文献   

5.
Soluble material extracted from T. colubriformis fourth stage larvae was fractionated by membrane ultrafiltration, gel filtration and ion-exchange chromatography. The acetylcholinesterase (AChE) peak obtained by gel filtration protected guinea-pigs against infection but it was contaminated by worm allergen. However, there was no relationship between the AChE content of fractions obtained by membrane ultrafiltration and ion-exchange chromatography and their ability to stimulate protective immunity. Purified T. colubriformis AChE, prepared by ion-exchange chromatography and free from demonstrable allergen did not stimulate protective immunity whereas another fraction, containing less than one-thousandth the amount of AChE, was effective in doing so.  相似文献   

6.
《Phytomedicine》2013,20(14):1321-1324
Huperzine A, a Lycopodium alkaloid produced by Chinese folk herb Huperzia serrata (Lycopodiaceae), has been shown to be a promising agent for the treatment of Alzheimer's disease due to its potent acetylcholinesterase (AChE) activity, as well its efficacy in the treatment of memory of aged patients. Thus, the effects of two Huperzia species of habitats in Brazil (H. quadrifariata and H. reflexa) with described in vitro AChE inhibition activities were studied and their effects on mice brain AChE inhibition were determined after a single intraperitoneal (i.p.) injection. The alkaloid extracts were administered to mice in various doses (10, 1 and 0.5 mg/kg) and acetylcholinesterase activity was measured post mortem in two brain areas using the Ellman's colorimetric method. The AChE activity was found to be significantly reduced in both the cortex and hippocampus, although this activity was less potent than that of reference inhibitor huperzine A (0.5 mg/kg). Thus, it appears that H. quadrifariata and H. reflexa alkaloid extracts, shown to inhibit acetylcholinesterase in vitro, also have very potent in vivo effects, suggesting that the Huperzia species may still constitute a promising source of compounds with pharmaceutical interest for Alzheimer's disease.  相似文献   

7.
Our recent study reported that maize acetylcholinesterase (AChE) activity in the coleoptile node is enhanced through a post-translational modification response to heat stress and transgenic plants overexpressing maize AChE gene had an elevated heat tolerance, which strongly suggests that maize AChE plays a positive, important role in maize heat tolerance. Here we present (1) maize AChE activity in the mesocotyl also enhances during heat stress and (2) maize AChE mainly localizes in vascular bundles including endodermis and epidermis in coleoptile nodes and mesocotyls of maize seedlings.  相似文献   

8.
The acetylcholinesterase (AChE) activity of cultures from 11-day-old chick embryo muscle cells was studied for up to 4 weeks in vitro. AChE activity was found in mononucleated cells and multinucleated myotubes. The activity increased greatly after fusion. Maximum AChE levels were reached after 7–10 days of incubation and tended to decline thereafter. Multiple forms of AChE found in embryo muscle in situ were present in cultures before and after fusion. Selective inhibitors and substrates were used to show that AChE was released by the cells into their medium. Within a 2-day period the AChE that accumulated in the medium averaged over 6 times that remaining in the cells. Release of AChE from the cells was inhibited by cycloheximide, and AChE levels in cells and medium were much reduced when differentiation was inhibited by bromodeoxyuridine. Little AChE was present in subcultures of fibroblasts from muscle cultures. Acetyl-β-methylcholine and, to a lesser degree, choline itself, prevented the decrease in AChE levels of 2- to 3-week-old muscle cultures.  相似文献   

9.
Several studies have shown the mechanisms and importance of immune responses against Toxoplasma gondii infection and the notable role of cholinesterases in inflammatory reactions. However, the association between those factors has not yet been investigated. Therefore, the aim of this study was to evaluate the acetylcholinesterase (AChE) activity in blood and lymphocytes and the activity of butyrylcholinesterase (BChE) in serum of rats experimentally infected with T. gondii during the acute phase of infection. For that, an in vivo study was performed with evaluations of AChE and BChE activities on days 5 and 10 post-infection (PI). The activity of AChE in blood was increased on day 5 PI, while in lymphocytes its activity was enhanced on days 5 and 10 PI (P<0.05). No significant difference was observed between groups regarding to the activity of BChE in serum. A positive (P<0.01) correlation was observed between AChE activity and number of lymphocytes. The role of AChE as an inflammatory marker is well known in different pathologies; thus, our results lead to the hypothesis that AChE has an important role in modulation of early immune responses against T. gondii infection.  相似文献   

10.
A full-length cDNA encoding an acetylcholinesterase (AChE) from Hydra magnipapillata was isolated. All of the important aromatic residues that line a catalytic gorge in cholinesterases of other species were conserved, but the sequences of peripheral anionic and choline binding sites were not. Hydra AChE, expressed in Xenopus oocytes, showed AChE activity. The gene was expressed in both ectodermal and endodermal epithelial cells except for the tentacles and basal disk. AChE gene expression was not detected in the regenerating tips in either the head or the foot, indicating that regeneration is controlled by the non-neuronal cholinergic system in Hydra.  相似文献   

11.
Due to recently discovered non-classical acetylcholinesterase (AChE) function, dual binding-site AChE inhibitors have acquired a paramount attention of drug designing researchers. The unique structural arrangements of AChE peripheral anionic site (PAS) and catalytic site (CAS) joined by a narrow gorge, prompted us to design the inhibitors that can interact with dual binding sites of AChE. Eighteen homo- and heterodimers of desloratadine and carbazole (already available tricyclic building blocks) were synthesized and tested for their inhibition potential against electric eel acetylcholinesterase (eeAChE) and equine serum butyrylcholinesterase (eqBChE). We identified a six-carbon tether heterodimer of desloratadine and indanedione based tricyclic dihydropyrimidine (4c) as potent and selective inhibitor of eeAChE with IC50 value of 0.09 ± 0.003 μM and 1.04 ± 0.08 μM (for eqBChE) with selectivity index of 11.1. Binding pose analysis of potent inhibitors suggest that tricyclic ring is well accommodated into the AChE active site through hydrophobic interactions with Trp84 and Trp279. The indanone ring of most active heterodimer 4b is stabilized into the bottom of the gorge and forms hydrogen bonding interactions with the important catalytic triad residue Ser200.  相似文献   

12.
2-(Diethoxyphosphinylimino)-1,3-dithiolane (phosfolan) and its 4-methyl analog (mephosfolan) are proinsecticides as determined by microsomal mixed-function oxidase (MFO) activation to potent acetylcholinesterase (AChE) inhibitors. They are similarly activated by peracid oxidation which yields the sulfoxide and sulfone derivatives. The hydrolytically unstable S-oxides are irreversible AChE inhibitors that are 160- to 47,000-fold more potent than phosfolan and mephosfolan. MFO S-oxidation is indicated for both proinsecticides by (a) NADPH-dependent increases in potency as AChE inhibitors to an extent expected of sulfoxides, and (b) formation of the S-oxide hydrolysis product diethyl phosphoramidate.  相似文献   

13.
Nowadays, the inhibition of acetylcholinesterase is one of the main pharmacological strategies for the treatment of Alzheimer’s disease. Therefore, a set of thirty-four derivatives of the diterpenoid dehydroabietylamine has been synthesized and screened in colorimetric Ellman’s assays to determine their ability to inhibit the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). A systematic variation of the substitution of dehydroabietylamides enabled an approach to analogs showing a remarkable inhibition potency for AChE. Particularly N-benzoyldehydroabietylamines 11, 12 and 13 were excellent inhibitors for AChE, showing inhibition rates comparable to standard galantamine hydrobromide.  相似文献   

14.
15.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the π-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the π-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

16.
1. Bream (Abramis brama) were exposed to sublethal concentration of organophosphorus insecticide DDVP and the amount of food consumed and brain acetylcholinesterase (AChE) examined in exposed fish.2. Exposure to DDVP resulted in decreased amount of food consumed and inhibited brain AChE activity.3. Intraperitoneal injection of the fish with cholinergic drugs, atropine and TMB-4 recovered the feecling efficiency in exposed fish. TMB-4 recovered brain AChE activity as well.4. The results revealed that cholinergic system in fish brain constitutes biochemical mechanism controlling feecling behavior in fish.  相似文献   

17.
Genetics of Acetylcholinesterase in DROSOPHILA MELANOGASTER   总被引:17,自引:7,他引:10       下载免费PDF全文
Genes in Drosophila melanogaster that control acetylcholinesterase (AChE) were searched for by segmental aneuploidy techniques. Homogenates of flies containing duplications or deletions for different segments were assayed for enzyme activity. A region on the third chromosome was found for which flies having one does consistently gave lower AChE activity than euploid flies, which were in turn had lower activity than flies with three doses. The activity differences were in the approximate ratio 1:2:3. Fine structure deletion mapping within this region revealed a very small segment for which one-dose flies have approximately half-normal activity. To obtain putative AchE-null mutations, lethal mutations within this region were assayed. Four allelic lethals have approximately half-normal activity in heterozygous condition. These lethals probably define the structural locus (symbol: Ace) for AChE.  相似文献   

18.
A glycolipid anchorage for acetylcholinesterase (AChE) has been found in some tissues. In this paper, the possibility of such an anchorage has been explored in mammalian muscle membranes. We report that a phosphatidylinositol-specific phospholipase C (PIPLC) solubilizes AChE from microsomal membranes of mouse intercostal muscle. Among the several molecular forms of AChE, PIPLC specifically releases in a dose dependent manner one molecular form which migrates on linear sucrose gradients as a single peak of sedimentation coefficient 6.3 s. In other subcellular membrane fractions, including motor endplate enriched fraction, PIPLC fails to solubilize AChE. This type of membrane glycolipid mediated anchorage for AChE is then only detectable in a precise region of skeletal muscle.  相似文献   

19.
Automated docking was performed for stereospecific and quasi-irreversible organophosphorous acetylcholinesterase (AChE) inhibitors. Twelve chiral inhibitor structures, corresponding to six enantiomeric pairs, each with a phosphorus atom as a stereocentre, were docked to the crystal structure of mouse AChE. This study gives evidence that in inhibitors with different aromatic and cationic leaving groups these groups are oriented towards the entry of the active site, as recently suggested by Hosea et al[1] for inhibitors with a thiocholine leaving group. The results of the docking were used to establish a three dimensional model of the volume sterically available to the inhibitors within the AChE active site.  相似文献   

20.
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached −11.27 Kcal*mol−1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号