首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Håkanson  Lars 《Hydrobiologia》2004,518(1-3):135-157
Due to the complex nature of ecosystems, it has long been argued that process-based dynamic models will never predict well, and numerous studies and critical model tests have also shown this and that simple regression models often predict better for less work. A new generation of dynamic models have, however, been presented that invalidate previous statements about the predictive power of more comprehensive process-oriented dynamic models. These new dynamic models predict important ecosystem variables very well from few and readily accessible driving variables. This paper gives a review of these new models (mass-balance modelling for lakes, rivers and coastal areas and foodweb modelling based on functional groups) and highlights some important reasons for this break-through in modelling in terms of predictive power, wide applicability and practical use. This open new possibilities in aquatic ecology and ecosystem management, e.g., (1) to predict ecosystem effects of pollutants, (2) to estimate changes in the structure of aquatic foodwebs related to future climate changes, (3) to predict consequences of fish kill catastrophes and biomanipulations and (4) to develop new approaches to set fish quota to complement the methods used today where fish quotas are set from fish catch statistics, and not from the amount of food available for fish and for the prey of the fish, i.e., from the presuppositions given by the aquatic foodweb.  相似文献   

2.
Pacific salmon (Oncorhynchus spp.) accumulate substantial nutrients in their bodies as they grow to adulthood at sea. These nutrients are carried to predominantly oligotrophic lakes and streams, where they are released during and after spawning. Research over more than 3 decades has shown that the annual deposition of salmon-borne marine-derived nutrients (MD-nutrients) is important for the productivity of freshwater communities throughout the Pacific coastal region. However, the pathways and mechanisms for MD-nutrient transfer and accumulation in freshwater and riparian ecosystems remain virtually unexplored, consequently, there are many uncertainties in this area. This article addresses three related topics. First, we summarize recent advances in our understanding of the linkages among MD-nutrients, freshwater (including riparian) ecosystems, and community dynamics by addressing the importance of MD-nutrients to lakes and streams and by then reviewing large-scale and long-term processes in the atmosphere and ocean that govern variability in salmon populations. Second, we evaluate the validity of the discoveries and their implications for active ecosystem management, noting areas where extrapolation from these results still requires great caution. Finally, we outline five key research issues where additional discoveries could greatly augment our understanding of the processes shaping the structure and dynamics of salmon populations and the characteristics of their freshwater habitat and associated riparian zones. Collectively, the data suggest that the freshwater portion of the salmon production system is intimately linked to the ocean. Moreover, for the system to be sustainable, a holistic approach to management will be required. This holistic approach will need to treat climate cycles, salmon, riparian vegetation, predators, and MD-nutrient flowpaths and feedbacks as an integrated system. Received 3 July 2001; accepted 14 December 2001.  相似文献   

3.
Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production – the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.  相似文献   

4.
Data collected over a ten year period have been used to review some characteristics of freshwater and coastal ecosystems in Ghana. Studies were conducted on two recently formed man-made lakes, one river, five coastal lagoons and waters along the ocean front.Freshwaters had near neutral pH while coastal waters were alkaline. In both ecosystems the pH of sediments were lower than those of corresponding waters. While the transparency of coastal waters varied within narrow limits, large variations were observed in freshwaters. The lowest concentration of nutrients occurred in the river and the highest in coastal waters.In general, differences in these physical and chemical characteristics do not depend on whether the aquatic systems were fresh, brackish or saline. They seem to be more influenced by such factors as whether a water body: (1) was lotic or lentic, (2) was influenced by industrial or domestic activities, (3) was affected by impoundment, (4) received turbid water inflows, or (5) was eutrophic.  相似文献   

5.
This work presents and recommends 1) an empirically based new model quantifying the relationship between salinity, suspended particulate matter (SPM) and water clarity (as given by the Secchi depth) and (2) an empirical model for oxygen saturation in the deep-water zone for coastal areas (O2Sat in %). This paper also discusses the many and important roles that SPM plays in aquatic ecosystems and presents comparisons between SPM concentrations in lakes, rivers and coastal areas. Such comparative studies are very informative but not so common. The empirical O2Sat model explains (statistically) 80% of the variability in mean O2Sat values among 23 Baltic coastal areas. The model is based on data on sedimentation of SPM, the percentage of ET areas (areas where erosion and transportation of fine sediments occur), the theoretical deep-water retention time and the mean coastal depth. These two new models have been incorporated into an existing dynamic model for SPM in coastal areas that quantifies all important fluxes of SPM into, within and from coastal areas, such as river inflow, primary production, resuspension, sedimentation, mixing, mineralisation and the SPM exchange between the given coastal area and the sea (or adjacent coastal areas). The modified dynamic SPM model with these two new sub-models has been validated (blind tested) with very good results; the model predictions for Secchi depth, O2Sat and sedimentation are within the uncertainty bands of the empirical data.  相似文献   

6.
城市湖泊正面临着水体污染和生态系统退化的双重压力 ,对湖泊生态系统的状态进行预警是判定湖泊演化趋势以及制定相应控制对策的重要途径和手段。本文以武汉市汉阳地区的 6个小型城市湖泊为例 ,结合国内外的研究进展 ,从水生生态系统、湖滨生态系统和入湖沟渠生态系统 3方面入手 ,结合生物监测、生物标志物技术 ,综合考虑水文、水质和生态系统以及污染物扩散等因素 ,设计出汉阳地区湖泊生态系统的预警技术体系。该技术体系主要分 5步 :湖泊生态系统现状调研、生物标志物和关键指示因子确定、水质 -生态系统模拟、系统输出和灵敏度检验以及生态系统状态预警及对策、措施  相似文献   

7.
The nature of the resource that limits heterotrophic bacteria, i.e. mineral nutrients or carbon (C), has consequences for biogeochemical cycles in aquatic ecosystems. Our aim was to identify the resource [C or phosphorus (P)] that mainly limits bacteria in a set of 31 Mediterranean inland water ecosystems spanning a wide trophic range. We followed an intersystem observational approach with three complementary perspectives, comparing the bacterial demand with the resource supply in terms of both the quantity (demand : supply ratio for C and P) and quality (C : P ratio of demand and supply), and assessing the relative strength of each resource in controlling bacterial production. The trophic gradient revealed a shift in the main limiting resource for bacteria, from C at the oligotrophic end (typically high-mountain, low-productivity lakes) to mainly P at the eutrophic end (typically nonmountain, high-productivity lakes). The patterns of resource limitation of bacteria found here may be related to the autotrophic nature of most of the studied ecosystems linked to a Mediterranean climate regime as representative of lakes with low inputs of allocthonous C. These patterns are consistent with the theoretical approaches and may potentially shape the contribution of this type of ecosystems to biogeochemical cycles.  相似文献   

8.
9.
Angus  J. F.  Bowden  J. W.  Keating  B. A. 《Plant and Soil》1993,155(1):57-66
Models of the yield responses of crops to applied nutrients are a recent addition to the methods available for making fertilizer recommendations. They have a place in integrating nutrient information with information on other factors which affect yield and its response to added nutrients. This review deals with nitrogen models classified into three groups: those which predict yield-response curves based on empirical factors; those which simulate the yield response from complex simulation models of many processes regulating crop growth and the soil environment; and those which aim to simulate yield and selected processes based on simplified functional relationships which apply to a target region or industry. Three case studies representing the three classes of model are drawn from research on dryland wheat in different parts of Australia. They show examples in which models provide information which is unobtainable from experimental procedures and which provide information useful to farmers in making decisions about fertilizers.Suggestions are made for future developments in crop-nutrient modelling including further comparisons of models, linkage of models with tissue tests, modelling co-limiting nutrients, deciding on the appropriate level of detail within a model and the need for methods for calibrating and testing models on attributes other than yield alone.  相似文献   

10.
In areas with regular fishing coastal fleets seabirds may benefit from the predictability of discards from fishing vessels, but it is not clear to what extent birds rely on this predictable resource and whether foraging is synchronized with the diel availability of discards. In this paper we investigate if a typical scavenger species, the yellow‐legged gull Larus michahellis, takes advantage of the temporal and spatial predictability of fish discards in the western Mediterranean Sea. The activity and distribution of the trawling fleet in this area is regulated and very predictable in time and space. We gathered aerial survey data across a relatively large area close to the coast to study the spatial distribution and density of L. michahellis, and modelled the density distribution of the species in relation to several oceanographic, ecological and temporal variables, using two different modelling approaches: MARS (multivariate adaptative regression splines) and GLM (generalized linear models). Our models suggest that the spatial density of trawlers at sea and the time of the day are the best explanatory variables of gull distribution, and that gulls concentrate in areas with vessels mainly during fish discarding time, supporting the hypothesis that gulls optimize time foraging to take advantage of fishery waste predictability. Additional surveys from the main gull roosting sites inshore support this hypothesis, as gulls start leaving to the sea just before fishing is completed and vessels begin discarding fish scraps when back to the harbour. This study represents one of the few examples of applying MARS to density distribution modelling, although its application to marine ecosystems should be conducted with caution because of large areas with real absence data. GLMs have shown to be more adaptable to such kind of data. Our data confirm the importance of fishery waste for L. michahellis, not only as a food resource but also as a major driver of their activity and distribution patterns. The ability of seabirds to predict accurately when a food resource will be available implies that modelling their distribution at sea needs to include such variables, both in spatial and temporal dimensions.  相似文献   

11.
Mobile scavengers create hotspots of freshwater productivity   总被引:2,自引:0,他引:2  
Adjacent communities and ecosystems often differ in underlying productivity but are connected by flows of nutrients, energy, and matter. Pacific salmon ( Oncorhynchus spp.) transport substantial quantities of nutrients from marine ecosystems to coastal freshwater habitats when they return to spawn and die. Nutrients from their carcasses are initially concentrated in spawning streams and lakes, but are subsequently dispersed by abiotic (floods, hyporheic flow) and biotic processes (predators and scavengers). In southwest Alaska, mobile avian scavengers (gulls; Larus spp.) breed on small islands within salmon nursery lakes and consume large quantities of spawning salmon during the chick-rearing period. However the role of birds as vectors of salmon-derived nutrients remains unknown. We examined how gulls – by transporting salmon tissues to their chicks – create hotspots of biological productivity in the aquatic habitats surrounding their nesting colonies. We found that algal production was ∼10× higher at islands with high gull densities compared to islands without nesting gulls, but was concentrated within 40 m of island shorelines. Carbon stable isotopes (δ13C) confirmed that gulls enhance primary production in local benthic communities and demonstrated that this production was transferred up the food web to grazers (snails) and carnivores (blackfish). Nitrogen stable isotopes (δ15N) confirmed that salmon dominated the diet of gulls and that nutrients from gull guano were incorporated into algae and passed up the food web. By relocating and concentrating salmon-derived nutrients into new and distant locations, gulls alter and magnify production in local aquatic communities. We offer the first evidence that the avian community can move salmon-derived nutrients great distances, enriching otherwise isolated habitats.  相似文献   

12.
Due to their position at the land‐sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea‐level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change‐related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea‐level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.  相似文献   

13.
Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top‐down changes for biogeochemical cycles via consumer‐mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom‐up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity–ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems.  相似文献   

14.
15.
The restoration and management of shallow, pond-like systems are hindered by limitations in the applicability of the well-known models describing the relationship between nutrients and lake phytoplankton biomass in higher ranges of nutrient concentration. Trophic models for naturally eutrophic small, shallow, endorheic lakes have not yet been developed, even though these are the most frequent standing waters in continental lowlands. The aim of this study was to identify variables that can be considered as main drivers of phytoplankton biomass and to build a predictive model. The influence of potential drivers of phytoplankton biomass (nutrients, other chemical variables, land use, lake use and lake depth) from 24 shallow eutrophic lakes was tested using data in the Pannonian ecoregion (Hungary and Romania). By incorporating lake depth, TP, TN and lake use as independent and Chl-a as dependent variables into different models (multiple regression model, GLM and multilayer perception model) predictive models were built. These models explained >50% of the variance. Although phytoplankton biomass in small, shallow, enriched lakes is strongly influenced by stochastic effects, our results suggest that phytoplankton biomass can be predicted by applying a multiple stressor approach, and that the model results can be used for management purposes.  相似文献   

16.
草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响   总被引:9,自引:0,他引:9  
湖泊是地球表层系统中水、土、气等各个圈层相互作用的联结点,对区域物质如碳等元素循环具有重要影响.微生物是湖泊等水生态系统中的重要组成部分,是湖泊等生态系统中碳等元素物质循环的主要驱动者,是深入了解湖泊碳循环过程的关键.受人类活动等影响,湖泊生态系统,尤其是浅水湖泊生态系统往往表现出以高等水生植物(草型)为主要初级生产者的清水稳定态和以浮游藻类(藻型)为主要初级生产者的浊水稳定态,而随着湖泊营养负荷和湖泊环境条件的变化,这两个不同的稳定态之间可以发生转换或者剧变,这种剧变不仅影响湖泊生态系统中的微生物结构,而且对湖泊中有机碳的形成、循环过程及其微生物驱动机制产生重大影响.本文重点就湖泊生态系统中有机碳的转换与微生物关系以及草藻型稳定态的转换对微生物结构及其碳循环功能的影响等进行综述,进一步分析其中的关键科学问题,以期为深入了解湖泊生态系统中碳等元素循环的微生物驱动过程与机制提供帮助.  相似文献   

17.
Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature’s resilience; (7) Value nature: it’s money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.  相似文献   

18.
Understanding of general ecosystem principles may be improved by comparing disparate ecosystems. We compared nutrient cycling in lakes and streams to evaluate whether contrasts in hydrologic properties lead to different controls and different rates of internal nutrient cycling. Our primary focus was nutrient cycling that results in increased productivity, so we quantified nutrient cycling by defining the recycling ratio (ρ) as the number of times a nutrient molecule is sequestered by producers before export. An analytic model of nutrient cycling predicted that in lakes ρ is governed by the processes that promote the mineralization and retard the sedimentation of particulate-bound nutrients, whereas in streams, ρ is governed by processes that promote the uptake and retard the export of dissolved nutrients. These differences were the consequence of contrast between lakes and streams in the mass-specific export rates (mass exported · standing stock-1· time-1) of dissolved and particulate nutrients. Although ρ is calculated from readily measured ecosystem variables, we found very few published data sets that provided the necessary data for a given ecosystem. We calculated and compared ρ in two well-studied P-limited ecosystems, Peter Lake and West Fork Walker Branch (WFWB). When ecosystems were scaled so that water residence time was equal between these two ecosystems, ρ was three orders of magnitude greater in WFWB. However, when we scaled by P residence time, ρ was nearly equal between these two ecosystems. This suggests broad similarities in ρ across ecosystem types when ecosystem boundaries are defined so that turnover times of limiting nutrients are the same. Received 19 November 1998; accepted 6 October 1999.  相似文献   

19.
At least half of the world's population resides in the coastal zone and the livelihoods of billions of people are affected either directly or indirectly by the production and sustainability of nearshore fisheries. Landscape change, specifically development of tree plantations, is accelerating worldwide as developing countries integrate into global markets to sell goods, offer climate‐mitigation services (carbon), and/or provide renewable energy. These changes can release excess nutrients into adjacent coastal waters causing eutrophication that alters the structure and function of coastal ecosystems. This study examined the relationship between coastal drainage basin land use/land cover change (LCLUC), specifically development of tree plantations, patterns of chlorophyll‐a in nearshore coastal waters, and the biological condition of commercially important shellfish, Concholepas concholepas (loco) in southern Chile. Locos (N = 1374) were sampled across 13 watersheds (35 853 km2) and 42 fisheries management areas (spanning 250 km of coastline). Locos harvested from management areas influenced by tree plantations had approximately 30% more endobiont (shell‐boring) phoronids, almost twice as many endobiont polychaetes and twice as many epibiont (shell‐attaching) barnacles than locos from areas in close proximity to watersheds dominated by native forests (15–20% of the watershed). Phoronid infested locos from coastal waters adjacent to watersheds with tree plantations were of relatively poor biological condition (smaller and narrower in width) and of reduced market value. Our study suggests that tree plantations result in indirect ecological impacts to coastal fisheries (more nutrients and higher phytoplankton biomass, resulting in smaller, low quality locos), and costs are born by coastal fishers (lower prices for locos). Increases in tree plantations could thus potentially significantly impact coastal fisheries worldwide and such problems should be managed as an interconnected network of land use change, oceanic ecosystems, and economic systems that are considered an integrated socio‐ecological system.  相似文献   

20.
Elliott  M.  de Jonge  V.N. 《Hydrobiologia》2002,(1):513-524
Conceptual models are derived to indicate the signs and symptoms inherent in nutrient changes to brackish, estuarine and coastal areas of restricted circulation. These give a structured approach to detecting adverse symptoms of hypernutrification and eutrophication at all levels of biological organisation, from effects at cellular levels to the ecosystem approach. The conceptual models illustrate the bottom-up approaches to the detection and control of potential problems and the importance of top-down responses. The bottom-up approaches incorporate mechanisms with regard to inputs, retention of nutrients, biogeochemical cycling and the primary production response. The top-down approaches include the detection of responses in high-profile components of the marine system, such as fisheries, sea mammals and wading birds and seabirds, which are often of paramount socio-economic or conservation importance. The management of the above causes and consequences, and following from the adoption by signatories to proposals given by the Paris Commission (PARCOM), can be accomplished by the derivation of Ecological Quality Objectives (EcoQO) and Ecological Quality Standards (EcoQS). These are given here as a development from the Environmental Quality Objectives and Standards (EQO/EQS) approach. Such EcoQO and EcoQS are regarded as as an aid to monitoring and management of estuaries and coastal waters. That management includes recent proposals within European legislation aimed at monitoring and managing the health and integrity of coasts and estuaries, for example the implementation of the Nitrates, Species & Habitats, and Water Framework Directives. The paper, therefore, discusses both the quality and quantity of data involved in the science required by managers and the way ahead for assessing and managing the fate and effects of nutrients. Using European and U.S. examples, the paper introduces the major challenge of how the concerns highlighted can be addressed by policy action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号