首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen.  相似文献   

3.
We consider the problem of estimating bacterial concentration in a substance, given microbial count data. A Bayesian approach is proposed which naturally allows the incorporation of both plate-count data and extra information from confirmatory tests such as genotyping by polymerase chain reaction (PCR). The estimation methods yield posterior credible regions for bacterial concentration, in contrast to the previous methods, which generally only produce point estimates. The approach is illustrated with specific reference to the enumeration of the food-borne pathogen Escherichia coli O157 by spiral plating, although the methodology can be applied to any bacterium or counting method of interest. The results obtained provide guidance to the experimenter as to the number of confirmatory tests which should be performed, and also suggest that in the initial plate count one should err on the side of including rather than excluding colonies whose genotype seems unclear.  相似文献   

4.
Water–rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10–160 cm) and groundwater from a 50‐m‐deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative‐PCR. Different microbial communities were observed in the groundwater, the fracture‐coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen‐oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low‐temperature water–rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer–Tropsch‐type reactions, dominated in the fracture‐coating material. Putative hydrogen‐, ammonia‐, manganese‐ and iron‐oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water–rock reactions.  相似文献   

5.
The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentative-methanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL?1. For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs.  相似文献   

6.
The effects of copper on the microbial community of a coral reef sponge   总被引:1,自引:0,他引:1  
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators for sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha-proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 microg l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 microg l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 microg l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction in the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 microg l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morpho-type actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 microg l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 microg l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 microg l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 microg l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.  相似文献   

7.
The ultramafic-hosted Logatchev hydrothermal field (LHF) on the Mid-Atlantic Ridge is characterized by high hydrogen and methane contents in the subseafloor, which support a specialized microbial community of phylogenetically diverse, hydrogen-oxidizing chemolithoautotrophs. We compared the prokaryotic communities of three sites located in the LHF and encountered a predominance of archaeal sequences affiliated with methanogenic Methanococcales at all three. However, the bacterial composition varied in accordance with differences in fluid chemistry between the three sites investigated. An increase in hydrogen seemed to coincide with the diversification of hydrogen-oxidizing bacteria. This might indicate that the host rock indirectly selects this specific group of bacteria. However, next to hydrogen availability further factors are evident (e.g. mixing of hot reduced hydrothermal fluids with cold oxygenated seawater), which have a significant impact on the distribution of microorganisms.  相似文献   

8.
The coral holobiont is a dynamic assemblage of the coral animal, zooxanthellae, endolithic algae and fungi, Bacteria,Archaea and viruses. Zooxanthellae and some Bacteria form relatively stable and species-specific associations with corals. Other associations are less specific; coral-associated Archaea differ from those in the water column, but the same archaeal species may be found on different coral species. It has been hypothesized that the coral animal can adapt to differing ecological niches by 'switching' its microbial associates. In the case of corals and zooxanthellae, this has been termed adaptive bleaching and it has important implications for carbon cycling within the coral holobiont and ultimately the survival of coral reefs. However, the roles of other components of the coral holobiont are essentially unknown. To better understand these other coral associates, a fractionation procedure was used to separate the microbes, mitochondria and viruses from the coral animal cells and zooxanthellae. The resulting metagenomic DNA was sequenced using pyrosequencing. Fungi, Bacteria and phage were the most commonly identified organisms in the metagenome. Three of the four fungal phyla were represented, including a wide diversity of fungal genes involved in carbon and nitrogen metabolism, suggesting that the endolithic community is more important than previously appreciated. In particular, the data suggested that endolithic fungi could be converting nitrate and nitrite to ammonia, which would enable fixed nitrogen to cycle within the coral holobiont. The most prominent bacterial groups were Proteobacteria (68%), Firmicutes (10%), Cyanobacteria (7%) and Actinobacteria (6%). Functionally, the bacterial community was primarily heterotrophic and included a number of pathways for the degradation of aromatic compounds, the most abundant being the homogentisate pathway. The most abundant phage family was the ssDNA Microphage and most of the eukaryotic viruses were most closely related to those known to infect aquatic organisms. This study provides a metabolic and taxonomic snapshot of microbes associated with the reef-building coral Porites astreoides and presents a basis for understanding how coral-microbial interactions structure the holobiont and coral reefs.  相似文献   

9.
The effect of thiosulfate on dark assimilation of carbon dioxide in shallow marine environments was investigated in order to explain the recent discovery of bacterial thiosulfate oxidation in aerobic, open ocean seawater. The results demonstrate that the potential exists for microbial thiosulfate oxidation to increase both dark assimilation of carbon dioxide and the utilization of organic compounds in the sea. Thiosulfate-stimulated microbial activity may be caused not only by chemoautotrophic sulfur bacteria, but also by heterotrophic species which oxidize thiosulfate to tetrathionate. Measurements of dark assimilation of carbon dioxide made at different incubation times indicate that great care must be taken both in experimental procedure and in interpretation of results obtained with the dark assimilation technique.  相似文献   

10.
Summary Patterns of carbon assimilation into photosynthetic end products were measured in annual sea ice near the Antarctic stations of Davis and Mawson, during December 1982, following the peak of the spring ice algal bloom. Rates of14C assimilation in the ice communities, measured with an in situ sampler-incubation chamber ranged from 1.58–32.92 mg Cm-2h-1 during this period.The partitioning of14C bicarbonate into four subcellular fractions (chloroform-soluble, methanol/water (MeOH/H2O)-soluble, trichloroacetic acid (TCA)-soluble, and TCA-residue) and the efficacy of extraction was determined. During in situ incubations (3–4 h), it was found that a major proportion of the label was incorporated into a (13)-glucan which was distributed between the neutral MeOH/H2O-and TCA-soluble fractions. The remainder of the label was found in the chloroform-(lipid; ), charged MeOH/H2O-soluble (amino/organic acids; ) and TCA-residue (protein; ). The glucan accounted for 93% of the cellular carbohydrate of ice algae and had a linkage composition similar to the reserve (13)--D-glucan found in cultured diatoms. High14C-incorporation into MeOH/H2O- and TCA-soluble fractions also occurred over a 24 h in vitro incubation, although incorporation into protein, at the expense of the other fractions, continued during the night.While primary productivity in the ice communities was still appreciable during December, the prominent synthesis of reserve glucan and the decreasing cellular ratios of protein/carbohydrate suggests that the ice algae may be nutrient limited during this period.  相似文献   

11.
12.
The microbial community of a fermented molasses-fed sequencing batch reactor (SBR) operated under feast and famine conditions for production of polyhydroxyalkanoates (PHAs) was identified and quantified through a 16 S rRNA gene clone library and fluorescence in situ hybridization (FISH). The microbial enrichment was found to be composed of PHA-storing populations (84% of the microbial community), comprising members of the genera Azoarcus, Thauera and Paracoccus. The dominant PHA-storing populations ensured the high functional stability of the system (characterized by high PHA-storage efficiency, up to 60% PHA content). The fermented molasses contained primarily acetate, propionate, butyrate and valerate. The substrate preferences were determined by microautoradiography-FISH and differences in the substrate-uptake capabilities for the various probe-defined populations were found. The results showed that in the presence of multiple substrates, microbial populations specialized in different substrates were selected, thereby co-existing in the SBR by adapting to different niches. Azoarcus and Thauera, primarily consumed acetate and butyrate, respectively. Paracoccus consumed a broader range of substrates and had a higher cell-specific substrate uptake. The relative species composition and their substrate specialization were reflected in the substrate removal rates of different volatile fatty acids in the SBR reactor.  相似文献   

13.
14.
In a deep aquifer associated with an accretionary prism, significant methane (CH4) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH4 and hydrogen (H2) using anaerobic groundwater collected from the deep aquifer. To generate CH4, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H2 was detected and accumulated in the gas phase of the bioreactor. After the H2 decreased, rapid CH4 production was observed. Phylogenetic analysis targeting 16S rRNA genes revealed that the H2-producing fermentative bacterium and hydrogenotrophic methanogen were predominant in the reactor. The results suggested that syntrophic biodegradation of organic substrates by the H2-producing fermentative bacterium and the hydrogenotrophic methanogen contributed to the CH4 production. For H2 production, the anaerobic groundwater, amended with organic substrates and an inhibitor of methanogens (2-bromoethanesulfonate), was incubated in a bioreactor. After incubation for 24 h, H2 was detected from the gas phase of the bioreactor and accumulated. Bacterial 16S rRNA gene analysis suggested the dominance of the H2-producing fermentative bacterium in the reactor. Our study demonstrated a simple and rapid CH4 and H2 production utilizing anaerobic groundwater containing an active subterranean microbial community.  相似文献   

15.

Multi-walled carbon nanotubes (MWCNTs) released into the sewage may cause negative and/or positive effects on the treatment system. The objective of this study was to explore over 110 days’ effect of MWCNTs on the performance of anaerobic granular sludge and microbial community structures in an upflow anaerobic sludge blanket (UASB) reactor. The results showed that MWCNTs had no significant effect on the removal of chemical oxidation demand (COD) and ammonia in UASB reactor, but the total phosphorus (TP) removal efficiency increased by 29.34%. The biogas production of the reactor did not change. The anaerobic granular sludge tended to excrete more EPS to resist the effects of MWCNTs during the long-term impact. Illumina MiSeq sequencing of 16S rRNA gene revealed that MWCNTs did not affect the microbial diversity, but altered the composition and structure of microbial community in the reactor. In this process, Saccharibacteria replaced Proteobacteria as the highest abundant bacterial phylum. MWCNTs promoted the differentiation of methanogen structure, resulting in increase of Methanomassiliicoccus, Methanoculleus, and the uncultured WCHA1–57. These results indicated that MWCNTs impacted the performance of UASB reactor and the structures of the microbial community in anaerobic granular sludge.

  相似文献   

16.
The mechanism responsible for the inhibition of net carbon exchange (NCE) which was reported previously (DR Geiger et al. 1986 Plant Physiol 82: 468-472) was investigated by applying glyphosate [N-(phosphonomethyl)glycine] to exporting leaves of sugar beet (Beta vulgaris L.). Leaf internal CO2 concentration (Ci) remained constant despite decreases in stomatal conductance and NCE following glyphosate treatment, indicating that the cause of the inhibition was a slowing of carbon assimilation rather than decreased conductance of CO2. Throughout a range of CO2 concentrations, NCE rate at a given Ci declined gradually, with the time-series of response curves remaining parallel. Gas exchange measurements revealed that disruption of chloroplast carbon metabolism was an early and important factor in mediating these glyphosate effects, perhaps by slowing the rate of ribulose bisphosphate regeneration. An increase in the CO2 compensation point accompanied the decrease in NCE and this increase was hastened by stepwise lowering of the ambient CO2 concentration. Eventually the CO2 compensation point approached the CO2 level of air and the difference between internal and external CO2 concentrations decreased. In control and in glyphosate-treated plants, both carbon assimilation and photorespiration at atmospheric CO2 level were inhibited to a similar extent of air level of O2. Maintaining leaves in low O2 concentration did not prevent the decline in NCE rate.  相似文献   

17.
A mechanistic understanding of microbial assimilation of soil organic carbon is important to improve Earth system models’ ability to simulate carbon‐climate feedbacks. A simple modelling framework was developed to investigate how substrate quality and environmental controls over microbial activity regulate microbial assimilation of soil organic carbon and on the size of the microbial biomass. Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality leads to higher ratio of microbial carbon to soil organic carbon. Microbial biomass carbon peaks and then declines as cumulative activity increases. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global data set at the biome level. The modelling framework developed in this study offers a simple approach to incorporate microbial contributions to the carbon cycling into Earth system models to simulate carbon‐climate feedbacks and explain global patterns of microbial biomass.  相似文献   

18.
尽管近年来中国氮(N)沉降水平逐渐趋于稳定,但中国东南地区N沉降相比于其他地区仍处于较高水平。N沉降对陆地生态系统碳循环过程的影响不容忽视。微生物碳利用效率(CUE)是指微生物将吸收的碳转化为生物量碳的效率,高微生物CUE意味着高土壤有机碳存储潜力。因此,探究N沉降背景下微生物CUE的变化将有助于进一步认识陆地生态系统土壤碳存储的变化。然而,目前关于N沉降下微生物群落结构的变化如何影响微生物CUE鲜有报道。在福建省泉州市戴云山国家级自然保护区的罗浮栲林通过N添加模拟N沉降。实验共包括三个N添加处理:对照(CT,+0 kg hm-2 a-1)、低氮(LN,+40 kg hm-2 a-1)和高氮(HN,+80 kg hm-2 a-1)。测定不同处理土壤基本理化性质、微生物生物量、酶活性和CUE,并使用高通量测序对微生物群落结构和多样性进行测定。结果表明,N添加显著影响微生物CUE,随着N添加水平的增加,CUE逐渐增加;相反,土壤pH、可提取有机碳(EOC)和微...  相似文献   

19.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:8,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号