首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The muscular activity of the sea urchin pluteus is strongly affected by dibutyryl-c-AMP, in a stimulatory or inhibitory manner depending on the concentration, the time of exposure, and the spontaneous level of activity. 2. Dibutyryl-c-GMP, like muscarinic agents and the guanylate-cyclase activators biotin and nitrite, keeps the activity low. 3. It is suggested that the effects of muscarinic agents is mediated by c-GMP, the effects of certain monoamines by c-AMP. 4. The two cyclic nucleotides appear to control the cellular influx of Ca2+ in opposite directions. They therefore interfere with the stimulatory and paralytic effects of nicotinic agents.  相似文献   

2.
1. Ca2+-antagonists counteract the muscular activity of the sea urchin pluteus. Agents that block rapid Na+-channels have no effect.2. High muscular activity is induced by increasing the sea water concentration of Ca2+ or K+ and by a Ca2+-ionophore. The stimulatory effects tend to decline.3. Muscarinic agents counteract the effects of Ca2+ and K+.4. Variation in the concentration of Ca2+ or K+ has profound effects on the response to nicotinic agents.5. It is suggested that Ca2+ plays the role as a charge-carrier and in the release of monoamines from an inner source, and that an excessive Ca2+-influx induces an outflux of K+ leading to hyperpolarization and abolition of the impulse activity.  相似文献   

3.
The purpose of this paper is to shed some light on the systems controlling the contractile activities in the sea urchin pluteus, their pharmacological properties, the regional organization of the structures involved, their interactions, and their physiological roles. Physostigmine may bring about tetanic celomic activity of long duration. In spite of this it is possible to recognize the two activity patterns elicited by carbachol. The effects of the two agents, together with some histochemical data, suggests the occurrence of two control systems. The main muscular control system may be linked to adjoining cholinergic and mono-aminergic structures close to the mouth and is presumably responsible for the “reciprocal antagonism” between swallowing and celomic movements when the larva is stimulated (activity pattern I). It may involve intricate interactions between the cholinergic and monoaminergic components in the generation of muscular impulses. Another control system is presumably linked to neurons extending from the main ciliated band and responsible for the intestinal cycling and the “non-antagonistic” muscular activity (activity pattern II). After strong stimulation both control systems may become “exhausted” in some respects, but may eventually recover. In comparison with the effects of carbachol, the physostigmine effects are not quickly reversible which indicates that, to a great extent, they are due to inhibition of cholinesterase in deeper parts of the two control systems.  相似文献   

4.
The effect of carbamylcholine (carbachol) on the muscular, intestinal, and ciliar activities of the sea urchin pluteus larva (Psammechinus miliaris) show a complicated relation between the concentrations used, the length of exposure, and the physiological responses. Two main patterns of stimulated activity emerged upon carbachol treatment. In pattern I there is a reciprocal “antagonism” between swallowing and celomic movements, i.e. stimulation of one type of movement is attended by a decrease of the other type and even its complete paralysis. Paralysis of the celomic movements is attended by intestinal paralysis. In pattern II marked swallowing and celomic activity coexist. The fluctuations in these activities are strong, their maxima as well as their minima coincide, and intestinal cycling occurs. In pattern I low concentrations favour the celomic activity and counteract swallowing. At higher concentrations the initial effects are qualitatively similar but more intense and of short duration. They are quickly followed by the opposite effects (intense swallowing and celomic paralysis) together with intestinal paralysis. The effects are to a great extent quickly reversible after transfer of the larva to sea water. During prolonged or repeated exposure to the agent the system “adapts”, i.e. a pattern II activity may appear. If the concentration is not too high, this may be preceded or admixed by a renewed pattern I activity. The responses described suggest that two main control systems are involved in the regulation of the larval activities. The effects of acetylcholine are similar to those of carbachol but not identical. The question if the control mechanisms are related to regionally separated structures is discussed in a preliminary way.  相似文献   

5.
Clofibrate (Atromid-S), nicotinic acid, and insulin are known to be potent hypolipidemic and antilipolytic agents. The present study was undertaken to define the mechanism of action of this latter effect on isolated rat and human fat cells. Sodium clofibrate (0.42 mM), nicotinic acid (0.42 mM), and insulin (100 microU/mL) were shown to inhibit norepinephrine-stimulated lipolysis in rat and human adipose cells and this inhibition was associated with a reduction in intracellular 3',5'-cyclic AMP levels. A similar cyclic AMP lowering effect was demonstrated with insulin in the presence of procaine-HCL, which uncouples the adenylate cyclase system from lipolysis. This insulin effect was attributed to inhibition of adenylate cyclase. A direct and significant inhibition of adenylate cyclase in membrane fractions obtained from isolated human adipocytes was demonstrated for all three antilipolytic agents. The common membrane site of action of these agents whereby adenylate cyclase activity is depressed, thus decreasing cyclic AMP production and free fatty acid (FFA) mobilization from adipose stores, implies a central role for the adenylate cyclase system. These findings are consistent with the view that the hypotriglyceridemic effects of clofibrate, nicotinic acid, and insulin may be partly explained by deprivation of FFA substrate for hepatic very low density lipoprotein synthesis.  相似文献   

6.
Sea lilies are enigmatic animals due to their scarcity and their biology is comparatively neglected. Cirri, arranged in whorls of five along the sea lily stalk, anchor and support the animal. They consist of ossicles interconnected by collagenous ligaments and by a central canal. Cirri have a well-developed nervous system but lack muscular cells. A light and electron microscopic study was performed to clarify the morphology of the nervous system of the cirri. Two cellular networks were found, one of neuron-like cells and one of cells filled with bullet-shaped organelles. Both networks ramify throughout the cirral ossicles up to the interossicle ligaments. Mechanical tests were performed to analyse the influence of cholinergic agonists on the mechanical properties of these ligaments. In the tests, the cirral ligaments softened after the application of acetylcholine, muscarinic agonists and nicotinic agonists. The reaction time to muscarinic agonists was much slower than to acetylcholine and nicotinic agonists. At low concentrations, muscarinic agonists caused active development of force. No reaction to stimuli was observed in anaesthetized cirri. The data clearly establish the existence of catch connective tissue which can change its mechanical properties under nervous control mediated via nerves with cholinergic receptors. The possible sources of the observed force production are discussed and it is concluded that active contraction of collagenous ligaments causes movement of cirri.  相似文献   

7.
Nizri E  Brenner T 《Amino acids》2013,45(1):73-85
Research done in the past years pointed to a novel function of cholinergic transmission. It has been shown that cholinergic transmission can modulate various aspects of the immune function, whether innate or adaptive. Cholinergic transmission affects immune cell proliferation, cytokine production, T helper differentiation and antigen presentation. Theses effects are mediated by cholinergic muscarinic and nicotinic receptors and other cholinergic components present in immune cells, such as acetylcholinesterase (AChE) and cholineacetyltransferase. The α7 nicotinic acetylcholine receptor was designated anti-inflammatory activity and has shown promise in pre-clinical models of inflammatory disorders. We herein describe the various components of the immune cholinergic system, and specifically the immune suppressive effects of α7 activation. This activation can be accomplished either by direct stimulation or indirectly, by inhibition of AChE. Thus, the presence of the immune cholinergic system can pave the way for novel immunomodulatory agents, or to the broadening of use of known cholinergic agents.  相似文献   

8.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

9.
Experiments are described, showing the presence of putative nicotinic cholinoreceptors in the egg after fertilization. The experiments were carried out on gametes and early embryos of the sea urchin Paracentrotus lividus, by using nicotinic agonists and antagonists. 1 mM Acetylcholine (ACh), 100 microM nicotine, 100 nM alpha-bungarotoxin (alpha-BuTx) and 100 microM curare inhibit sperm motility and fertilization, while they have no effect on unfertilized eggs. The drugs added within 1 min. after the raising of the fertilization layer had stronger effects on cleavage and development; when added more than 15 min. after the raising of the fertilization layer, they had lesser effects on further development up to pluteus stage. In all the experiments, nicotine was the most effective drug. The binding of fluorescein-labelled alpha-BuTx did not point out any affinity sites on unfertilized eggs, while they were localized on the sperms and on the eggs fertilized by sperms, but not on the eggs activated artificially. The binding was prevented by pretreatment of sperms and activated eggs with 10 nM native alpha-BuTx and 10 microM curare. We conclude that, in the fertilized egg, putative nicotinic cholinoreceptors are present, which are able to bind alpha-BuTx and curare. Fertilization by sperms is needed to trigger the formation of alpha-BuTx receptors.  相似文献   

10.
Peptide Nucleic Acid (PNA) is a powerful new biomolecular tool with a wide range of important applications. PNA mimics the behaviour of DNA and binds complementary nucleic acid strands. The unique chemical, physical and biological properties of PNA have been exploited to produce powerful biomolecular tools, antisense and antigene agents, molecular probes and biosensors.  相似文献   

11.
The nicotinic acetylcholine receptor is among the most thoroughly characterized molecules in the nervous system, and its role in mediating fast cholinergic neurotransmission has been broadly conserved in both vertebrates and invertebrates. However, the accessory molecules that facilitate or regulate nicotinic signaling remain mostly unknown. One approach to identify such molecules is to use molecular genetics in a simple, experimentally accessible organism to identify genes required for nicotinic signaling and to determine the molecular identity of the mutant genes through molecular cloning. Because cellular signaling pathways are often highly conserved between different animal phyla, the information gained from studies of simple organisms has historically provided many critical insights into more complex organisms, including humans. Genetic screens essentially make no prior assumptions about the types of molecules involved in the process being studied; thus, they are well suited for identifying previously unknown components of cell signaling pathways. The sophisticated genetic tools available in organisms such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster have also proven extremely powerful in elucidating complex biologic pathways in the absence of prior biochemical information and for assessing a molecule's in vivo function of in the context of an intact nervous system. This review describes how genetic analysis has been used to investigate nicotinic signaling mechanisms in worms and flies, and the prospects for using these studies to gain insight into nicotinic receptor function and regulation in humans.  相似文献   

12.
We investigated the occurrence and distribution of the ligand-binding alpha-subunits of nicotinic acetylcholine receptors in the rat arterial system in situ by means of RT-PCR and immunohistochemistry. Except the alpha9-subunit, all other mammalian non-muscular alpha-subunits were expressed in the arterial wall--either in endothelial or in smooth muscle cells--suggesting it as a direct target of nicotine and endogenous acetylcholine. The distribution pattern of alpha-subunits found in smooth muscle cells varied considerably among the individual elastic, muscular and intraparenchymal arteries investigated, suggesting that non-neuronal cholinergic signalling via nicotinic receptors in the vascular wall includes components that are highly specific for individual arteries.  相似文献   

13.
Molecular genetic analysis of volatile-anesthetic action.   总被引:7,自引:2,他引:5       下载免费PDF全文
The mechanism(s) and site(s) of action of volatile inhaled anesthetics are unknown in spite of the clinical use of these agents for more than 150 years. In the present study, the model eukaryote Saccharomyces cerevisiae was used to investigate the action of anesthetic agents because of its powerful molecular genetics. It was found that growth of yeast cells is inhibited by the five common volatile anesthetics tested (isoflurane, halothane, enflurane, sevoflurane, and methoxyflurane). Growth inhibition by the agents is relatively rapid and reversible. The potency of these compounds as yeast growth inhibitors directly correlates with their lipophilicity as is predicted by the Meyer-Overton relationship, which directly correlates anesthetic potency of agents and their lipophilicity. The effects of isoflurane on yeast cells were characterized in the most detail. Yeast cells survive at least 48 h in a concentration of isoflurane that inhibits colony formation. Mutants resistant to the growth-inhibitory effects of isoflurane are readily selected. The gene identified by one of these mutations, zzz4-1, has been cloned and characterized. The predicted ZZZ4 gene product has extensive homology to phospholipase A2-activating protein, a GO effector protein of mice. Both zzz4-1 and a deletion of ZZZ4 confer resistance to all five of the agents tested, suggesting that signal transduction may be involved in the response of these cells to volatile anesthetics.  相似文献   

14.
The frog toxin epibatidine is one of the most powerful ligands of the neuronal nicotinic receptors and derivatives show promising possibilities for labeling in positron emission tomography studies. In an attempt to reduce epibatidine toxicity, new methyl derivatives were synthesized, tested in positron emission tomography imaging and in electrophysiology. labeling as well as physiological experiments highlighted the differences in sensitivity of the neuronal nicotinic acetylcholine receptors between two methyl enantiomers and the reduction in sensitivity caused by introducing the methyl group. At present, epibatidine derivatives seem the most promising compounds for in vivo labeling of neuronal nicotinic acetylcholine receptors.  相似文献   

15.
The effects of inhibitors of mitosis, energy metabolism and protein synthesis on clot retraction were investigated. The results show that (1) Incubation of colchicine (0-01-0-1 mM) with platelet-rich plasma (PRP) inhibits the subsequent retraction of clots derived from diluted PRP. (2) Inhibition of clot retraction by high concentrations of colchicine (up to 40 mM) can be overcome by increasing the platelet concentration in the system. (3) Incubation of clots in colchicine or 80% D2O solutions inhibits their retraction. Exposure of partially retracted clots to these agents is without effect. (4) Hydrostatic pressure retards clot retraction. (5) Incubation of PRP with either 2-deoxy-D-glucose or antimycin alone does not affect clot retraction, but a combination of these agents is inhibitory. (6) Clot retraction is not inhibited by puromycin or cycloheximide. (7) Platelets in retracting clots have constricted regions containing microfilaments and pseudopods containing microtubules. Fibrin strands are progressively condensed around the constricted regions as retraction advances. (8) The development of platelet constriction, platelet pseudopods and the intracellular microfilaments are delayed in colchicinized clots, corresponding to the retardation of retraction. Following the initial delay of retraction colchicinized clots, like controls, show condensation of fibrin strands adjacent to these constricted areas of platelets containing microfilaments. The formation of pseudopods is impaired and no microtubules are found in platelets in the presence of colchicine. The above results suggest that the thrombin-induced platelet contraction during clot retraction is a coordinated movement, which, under optimal conditions involves both microtubules and microfilaments. The contraction of microfilaments produces the constriction of platelets and brings about clot retraction by reducing the angle between fibrin strands. Platelet microtubules are related to the development of pseudopods and play a supplementary role in facilitating microfilament-mediated cellular constriction. The similarities between platelet contraction and cellular motility in mitosis is discussed.  相似文献   

16.
Novel nicotinic ligands, characterized by the presence of an amino substituted cyclopropane ring connected to a pyridine nucleus, are described. Pharmacological investigation revealed that these compounds exhibit highest affinity for the rat alpha4beta2 subtype of the nicotinic receptor with no affinity for the muscarinic receptor. No appreciable affinity for the muscular or for the ganglionic nicotinic receptor was observed at concentrations up to 10 microM. The increase in cortical ACh release as well as a positive effect on memory in a social recognition test in rat are exemplified.  相似文献   

17.
The binding constants (K(i) values) of 24 caracurine V and 6 iso-caracurine V analogues for the muscle type of nicotinic ACh receptors (nAChR) from Torpedo californica were determined in a binding assay using (+/-)-[(3)H]epibatidine as a radioligand. The allyl alcohol group present in the iso-caracurine V ring system was found to be essential for high binding affinity. The most potent compounds are the dimethyl and di-(4-nitrobenzyl)-iso-caracurinium V salts 29 (18 nM), and 31 (79 nM), respectively. Compound 29 and the corresponding diallyl analogue 30 (350 nM) exhibited similar binding affinities as the equally substituted neuromuscular-blocking agents toxiferine I (14 nM) and alcuronium (234 nM), respectively. The SAR results were confirmed by QSAR studies, which additionally revealed that the presence of hydrogen-bond acceptor groups close to the quaternary nitrogen, is detrimental for the nicotinic binding affinity. The diallyl- and dimethylcaracurinium V salts 13 and 27, respectively, which are known to be among the most potent allosteric modulators of M(2) receptors (EC(50)=10 and 8nM, respectively), exhibited rather low nicotinic binding affinities for muscle type nAChR (K(i)=1.5 and 5.2 microM, respectively). Such a large difference in affinity suggests that it is possible to develop compounds with high muscarinic allosteric potency and low or negligible affinities for (alpha1)(2)beta1gammadelta nAChR. Additionally, the iso-caracurine V analogues with binding affinities comparable to those of (+)-tubocurarine and alcuronium could become a new class of neuromuscular-blocking agents.  相似文献   

18.
An account is given of the various movements of the proboscis of Bonellia viridis. When at rest, the proboscis is coiled up in front of the trunk. The proboscis lobes progress with a velocity of the order of 1 mm/sec by means of powerful cilia situated on the dorsal surface of the leading edge. The lobes passively drag and uncoil the stem of the proboscis which is further uncoiled by muscular contractions taking place along the uncoiled part of the stem. Proboscis retraction takes place by means of contraction of the numerous longitudinal muscle strands of the stem. The terminal lobes can attach to the substrate and pull the trunk by contraction of the proboscis stem. The proboscis often ties itself into a knot which it can untie.  相似文献   

19.
The interaction between the neuropeptide alpha-MSH and the acetylcholinergic system as reflected by changes in cAMP and inositol 1-3-5 triphosphate(IP(3))production was investigated in an in vitro model of striatal slices. The possible involvement of D(1) receptors in cholinergic and alpha-MSH- stimulated cAMP and IP(3) production in slices of rat striatum was also examined, because it has been demonstrated that acetylcholinergic drugs induce endogenous dopamine release in the striatum. alpha-MSH, pilocarpine(PL) and the selective muscarinic M1 agonist McN-A-343 increased cAMP and IP(3) striatal levels, effects blocked by the D(1) antagonist SCH-23390, except for the effects of alpha-MSH on IP(3).The muscarinic M(2) antagonist gallamine (GL) brought about an increase in cAMP levels, an effect blocked by SCH-23390. The M(1) antagonist pirenzepine (Pz) induced a decrease both in cAMP and IP(3) content, and the nicotinic antagonist di-hydro-beta-eritroidine(DBE) only diminished cAMP production. When alpha-MSH and cholinergic agents were simultaneously added, cAMP and IP(3) levels were modified with respect to the values reached when these agents were added alone. An interaction between the acetylcholinergic system and alpha-MSH through M(1) and nicotinic receptors was also observed. These results suggest that the intracellular signaling pathways related to cAMP and IP(3) production gated by alpha-MSH and these cholinergic receptors are probably related. alpha-MSH striatum cAMP IP(3) muscarinic and nicotinic receptors an in vitro model.  相似文献   

20.
3,5-Bicyclic aryl piperidines are a new class of high-affinity alpha4beta2 nicotinic receptor agents. We have sought nicotinic receptor partial agonists of the alpha4beta2 nicotinic acetylcholine receptor for smoking cessation, and a number of compounds fulfill potency, selectivity, and efficacy requirements in vitro. In vivo, selected agents demonstrate potent partial agonist efficacy on the mesolimbic dopamine system, a key measure of therapeutic potential for smoking cessation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号