首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5′ tiRNAs into the same category: 5′-tRFs and review the biological functions and regulatory mechanisms of 5′-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.  相似文献   

4.
Gu  Hanqing  Lian  Bi  Yuan  Yuxiang  Kong  Ci  Li  Yan  Liu  Chang  Qi  Yijun 《中国科学:生命科学英文版》2022,65(1):1-15
Science China Life Sciences - Apart from their primordial role in protein synthesis, tRNAs can be cleaved to produce tRNA-derived small RNAs (tsRNAs). The biological functions of tsRNAs in plants...  相似文献   

5.
近年来,转运RNA(transfer RNA,tRNA)衍生的小RNA(tRNA-derived small RNA,tsRNAs)被认为是一种新的、潜在的非编码RNAs(non-coding RNA,ncRNAs)。根据在前体或成熟tRNA上切割位置的不同,tsRNAs主要被分为两种类型,即tRNA halves(tRNA-derived stress-induced RNA,tiRNAs)和tRNA衍生片段(tRNA-derived fragment,tRFs)。越来越多的证据表明,tsRNAs参与翻译起始抑制、基因沉默和调节核糖体发生等多种细胞代谢过程,并在癌症、神经退行性疾病、代谢性疾病和病毒感染等相关疾病的发生、发展中都起着重要的作用。综述tsRNAs生物学功能和作用机制及其在相关疾病中的潜在应用,总结tsRNAs研究目前存在的问题和未来的研究方向。  相似文献   

6.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.  相似文献   

7.
tRNA-derived small RNAs(tsRNA)是近年来发现的、存在于多种生物体内的一类非编码小RNA,来源于成熟tRNA或tRNA前体,其表达和修饰具有组织和细胞特异性. tsRNA参与应激反应、蛋白质翻译调控、核糖体生物合成、肿瘤发生、细胞增殖与凋亡、表观遗传信息的跨代传递等多种生理和病理过程. 本文主要对tsRNA的生成及分类、已知的生物学功能及作用机理、tsRNA 及其修饰在疾病中的作用等进行了综述.  相似文献   

8.
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR−/−) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR−/− mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR−/− mice, warrant further investigations.  相似文献   

9.
10.
随着测序技术的发展和对tRNA衍生小分子(tRNA-derived small RNA,tsRNAs)的深入研究,越来越多的tsRNAs及其功能在各物种中被鉴定。tsRNAs根据切割位点的不同可分为tRNA衍生片段(tRNA-derived fragment,tRF)和tRNA应激诱导RNA(tRNA-derived stress-induced RNA,tiRNA),其中tRF是一类具有调节功能的非编码RNA。为了加深对tRF的研究,近年来一些基于测序数据的tRF鉴定方法和相关数据库不断涌现,前者主要包括Telonis等人的算法和tDRmapper方法,后者主要有tRFdb、tRF2Cancer和MINTbase等。同时这两者为tRF的深入研究提供了更有效的工具。大量的研究表明,tRF主要以类似miRNA的方式对RNA、DNA及蛋白质进行调节,但也存在特异的作用方式。随着对这三者的深入研究,研究人员发现tRF在人类疾病的各种生物过程中也扮演着重要的角色,例如可以作为生物标志物。因此本文主要对tRF的鉴定方法、数据库、对靶分子的调节机制及其与人类疾病的关系作一综述。  相似文献   

11.
12.
tRNA-derived small RNAs (tRFs), a kind of noncoding RNAs, are generated from transfer RNAs. tRFs have some types according to their source and sizes. They play important roles in cell life and carcinogenesis. In this paper, we review the biogenesis and biological properties. We also focus on current progress of tRFs and some tsRNAs such as tRF-Leu-CAG, which have been studied or will be further investigated in tumorgenesis and diagnostic biomarkers in the clinic.  相似文献   

13.
《Genomics》2022,114(4):110392
tRNA-derived small RNAs (tsRNAs) participate in several biological processes, including carcinogenesis. The correlations between tsRNAs and human cancers are attracting substantial attention. Nevertheless, the involvement of tsRNAs in laryngeal squamous cell carcinoma (LSCC) progression remains unclear. We constructed tsRNAs expression profiles in LSCC and adjacent normal tissues by next-generation sequencing. Interestingly, we identified a specific 5′-tiRNA fragment (tRF-33-Q1Q89P9L842205) that was significantly downregulated and was closely associated with lymph node metastasis and advanced stages of LSCC. Importantly, we found that tRF-33-Q1Q89P9L842205 suppressed cell growth, proliferation, migration, invasion and induced apoptosis in LSCC by directly silencing phosphoinositide 3-kinase catalytic subunit (PIK3CD). We speculated that tRF-33-Q1Q89P9L842205 is a potential diagnostic biomarker for LSCC and acts as a tumor suppressor by directly targeting PIK3CD.  相似文献   

14.
Endogenous transfer RNA-derived small RNAs (tsRNAs) are newly identified RNAs that are closely associated with the pathogenesis of multiple diseases, but the involvement of tsRNAs in regulating acute pancreatitis (AP) development has not been reported. In this study, we screened out a novel tsRNA, tRF3-Thr-AGT, that was aberrantly downregulated in the acinar cell line AR42J treated with sodium taurocholate (STC) and the pancreatic tissues of STC-induced AP rat models. In addition, STC treatment suppressed cell viability, induced pyroptotic cell death and cellular inflammation in AP models in vitro and in vivo. Overexpression of tRF3-Thr-AGT partially reversed STC-induced detrimental effects on the AR42J cells. Next, Z-DNA-binding protein 1 (ZBP1) was identified as the downstream target of tRF3-Thr-AGT. Interestingly, upregulation of tRF3-Thr-AGT suppressed NOD-like receptor protein 3 (NLRP3)-mediated pyroptotic cell death in STC-treated AR42J cells via degrading ZBP1. Moreover, the effects of tRF3-Thr-AGT overexpression on cell viability and inflammation in AR42J cells were abrogated by upregulating ZBP1 and NLRP3. Collectively, our data indicated that tRF3-Thr-AGT suppressed ZBP1 expressions to restrain NLRP3-mediated pyroptotic cell death and inflammation in AP models. This study, for the first time, identified the role and potential underlying mechanisms by which tRF3-Thr-AGT regulated AP pathogenesis.  相似文献   

15.
16.
Deep sequencing technologies such as Illumina, SOLiD, and 454 platforms have become very powerful tools in discovering and quantifying small RNAs in diverse organisms. Sequencing small RNA fractions always identifies RNAs derived from abundant RNA species such as rRNAs, tRNAs, snRNA, and snoRNA, and they are widely considered to be random degradation products. We carried out bioinformatic analysis of deep sequenced HeLa RNA and after quality filtering, identified highly abundant small RNA fragments, derived from mature tRNAs that are likely produced by specific processing rather than from random degradation. Moreover, we showed that the processing of small RNAs derived from tRNAGln is dependent on Dicer in vivo and that Dicer cleaves the tRNA in vitro.  相似文献   

17.
Parental age at first pregnancy is increasing worldwide. The offspring of aged father has been associated with higher risk of several neuropsychiatric disorders, such as schizophrenia and autism, but the underlying mechanism remains elusive. Here we report that advanced paternal age in mice alters the profile of transfer RNA‐derived small RNAs (tsRNAs). Injection of sperm tsRNAs from aged male mice into zygotes induced anxiety‐like behaviors in F1 males. RNA sequencing of the cerebral cortex and hippocampus of those F1 male mice altered the gene expression of dopaminergic synapse and neurotrophin. tsRNAs from aged male mice injection also altered the neuropsychiatry‐related gene expression in two‐cell and blastocyst stage embryos. More importantly, the sperm tsRNA profile changes significantly during aging in human. The up‐regulated sperm tsRNA target genes were involved in neurogenesis and nervous system development. These results suggest that aging‐related changes of sperm tsRNA may contribute to the intergenerational transmission of behavioral traits.  相似文献   

18.
19.
There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA–directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA–directed antiviral therapeutics and prophylactics.  相似文献   

20.
High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipelineoptimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users’ input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号