首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

2.
J C Miller  A J Friedhoff 《Life sciences》1979,25(14):1249-1255
The effect of dopamine on the K+-depolarized overflow of 3H-acetylcholine from rat striatal slices was investigated to determine whether drug-induced changes in neuronal sensitivity to dopamine might be manifested in changes in striatal cholinergic activity. Dopamine was found to produce a dose-dependent inhibition of the K+-evoked release of 3H-Ach. This inhibition could be blocked by prior exposure of the slices to haloperidol, a dopamine receptor blocker. Dopamine receptors localized on striatal cholinergic axon terminals and possibly postsynaptic dopamine receptors on cholinergic perikarya and dendrites may mediate the DA inhibition of 3H-Ach release induced by high K+. Chronic pretreatment with haloperidol followed by alpha-methyl-p-tyrosine resulted in a significant shift to the left in the dose-dependent inhibition of K+-stimulated overflow of 3H-Ach by dopamine. This shift to the left in the dose-response curve may be the result of an increase in the number of striatal dopamine receptors produced by chronic dopamine receptor blockade and inhibition of dopamine synthesis.  相似文献   

3.
Monoamine concentrations were low in the rostral area of the nucleus accumbens. Their distributions were not identical. Differences were observed in the medial area. DA concentrations were high in both medial and caudal areas. Noradrenaline (NA) and serotonin (5-HT) concentrations were considerably lower than the dopamine (DA) concentration. The NA concentration was highest in the caudal area of the nucleus accumbens and the (5-HT) concentration was highest in the ventrocaudal area. There was a rostrocaudal decrease in the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and 5-hydroxyindole-3-acetic acid (5-HIAA)/5-HT ratios. Uptake of [3H]DA and [14C]choline was lowest in the rostral area. The K+-stimulated release of [14C]acetylcholine (ACh) was also lowest rostrally, but there was no rostrocaudal difference in the K+-stimulated release of [3H]DA. These results provide further evidence of the heterogeneity of the nucleus accumbens.  相似文献   

4.
Liquid chromatography with electrochemical detection has been used to determine endogenous dopamine (DA) and serotonin (5-HT) in a striatal crude synaptosomal fraction isolated by centrifugal methods. The electrochemical determinations are accomplished with a new type of electrode material, pressure annealed pyrolytic graphite. The analysis scheme permits direct quantitation of DA and 5-HT with minimal sample pretreatment. The distribution of endogenous 5-HT in each subfraction throughout the centrifugation procedure is found to be approximately parallel to that of endogenous DA. The release of DA and 5-HT from the crude synaptosome preparation exhibits the properties expected for stimulus-coupled, depolarization-induced release. The release of both neurotransmitters is Ca2+ dependent and is induced by high K+ or veratridine in the external medium. The latter is blocked by tetrodotoxin. Release is independent of ascorbic acid, but is dependent on the temperature of incubation.  相似文献   

5.
Release of endogenous dopamine (DA) from arcuate-periventricular nucleus-median eminence fragments has been analyzed in an in vitro static incubation system.Exposure of these hypothalamic fragments to increasing concentrations of K+ ions produced a dose-dependent release of endogenous DA. The highest rate of K+-stimulated DA efflux occurred in the first 10 minutes, thereafter it progressively decline reaching prestimulated levels at 30 minutes. If two consecutive depolarizing stimuli of 40 mM KCl were applied to the same hypothalamic fragment, after a 40 minutes rest period, an equivalent release of endogenous DA occurred. Removal of Ca++ ions from the incubation medium containing the Ca++ chelator EGTA caused a decrease of basal DA efflux and completely prevented the K+-induced release of DA.Furthermore when verapamil, a blocker of Ca++ entrance, was added to the incubation medium in a concentration of 50 μM, the K+-induced DA efflux was completely counteracted, whereas spontaneous release was unmodified.Finally nomifensine, a potent blocker of DA uptake, added in vitro in a final concentration of 10 μM, significantly reinforced K+-induced release of endogenous DA. Since nomifensine did not modify basal DA release, this study confirmed its prevalent uptake blocking property rather than its releasing action on DA.  相似文献   

6.
The aim of the present study was to compare the release pattern of [3H]dopamine ([3H]DA) originated from [3H]tyrosine or by uptake in striatal synaptosomes. Synaptosomes prelabeled either with [3H]DA or with [3H]tyrosine were superfused in three conditions stimulating DA release by different mechanisms: (1) depolarization with high K+; (2) inversion of the Na+ gradient across the plasma membrane; (3) exposure tod-amphetamine. Since DA contained in different pools may exit from nerve endings by different processes, DA release was analyzed in the presence or in the absence of nomifensine which allows discrimination between carrier-mediated and carrier-independent processes. The pattern of DA release in the three conditions tested was identical, whether [3H]DA originated from synthesis or from uptake. Nomifensine did not affect the high-K+-induced release and inhibited that induced by the other two stimuli. The results suggest that newly synthesized and recaptured DA have a similar compartmentation in nerve endings.  相似文献   

7.
The rate of release of endogenous DA from rat brain striatal minces has been measured using a rapid superfusion apparatus. The apparatus provides immediate, continuous readout of easily oxidized substances in the perfusate using an amperometric detector. Subsequent analysis of the perfusate (which contains pargyline) by liquid chromatography shows that the major substance detected is DA. DA release is induced by a 30 s exposure to 60 mM K+ and is Ca2+-dependent. Similar results are obtained with veratridine (10?4 M). The time resolution of the perfusion system permits discrimination of the decreased rate of release induced by veratridine (10?4 M) and amphetamine (10?5 M) as opposed to 60 mM K+. Repetitive stimulation of the striatal mince with 60 mM K+ results in a decreased amount and rate of DA release. Subsequent exposure of the striatal mince to exogenous DA results in a restoration of the K+-induced, Ca2+-dependent release, indicating uptake of DA is operant under these conditions.  相似文献   

8.
The effects of chronic exposure to total ammonia nitrogen (TAN) concentrations on the brain monoamines and ATPases of Nile tilapia, Oreochromis niloticus fingerlings, were studied. The period of exposure was 70 consecutive days, and the initial weight of the fingerlings was 18 ± 2.1 g. In addition to the control, three treatment groups exposed to 2.5 (low), 5 (medium), and 10 (high) mg TAN L?1 concentrations were tested. The unionized ammonia nitrogen (NH3) levels calculated in mg L?1 were 0.059, 0.185, and 0.575 in aquaria at 26 °C. The brain monoamines were serotonin (5-HT), dopamine (DA), and norepinephrine (NE), as well as their derivatives, 5-hydroxyindoleacetic acid (5-HIAA) and dihydroxyphenylacetic acid (DOPAC). Compared with the controls, the levels of brain monoamines and Na+/K+- and Ca2+-ATPase activities were not significantly altered in fish exposed to low TAN concentration. However, there was a significant decrease in 5-HT, DA, and NE levels, and a significant increase in both serotonergic (5-HIAA/5-HT) and dopaminergic (DOPAC/DA) activities of fish exposed to medium TAN and high TAN concentrations. The activities of brain Na+/K+- and Ca2+-ATPases of fish exposed to medium TAN and high TAN concentrations significantly increased, while Mg2+-ATPase did not significantly change compared with that of the controls. The quantity of the detected alterations increased in fish exposed to high TAN concentration.  相似文献   

9.
The release of preloaded [3H]dopamine by the synaptosomal fraction prepared from rat forebrain was examined in the presence and absence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor. The release induced by high K+ was blocked by W-7 in a concentration-dependent manner after the pretreatment with and in the presence of the inhibitor. The inhibition by W-7 may specifically involve calmodulin, because little effects were seen with N-(6-aminohexyl)-naphthalenesulfonamide, an analog of W-7 with only a low affinity for calmodulin. W-7 may not affect the voltage-dependent Ca2+ channel of synaptosomal plasmalemma, since the inhibitor produced no change in the synaptosomal 45Ca2+ uptake induced by high K+ depolarization. Thus, calmodulin may play a role in transmitter release and may function at the step(s) after the increase of free Ca2+ concentration in the cytosol of the nerve terminal. W-7 affected only to a small extent [3H]dopamine release in the presence of A23187 plus Ca2+.  相似文献   

10.
The possibility that proteins reaching the abdominal ganglion of Aplysia by axonal transport from the circumesophageal ganglia might be subject to secretion in that structure was examined. Transported labeled protein was found to be released from the abdominal ganglion; such release was enhanced by exposure to a high K+ medium and by electrical stimulation of the transporting axons. Stimulation of release was inhibited by lowering the Ca2+/Mg2+ ratio of the medium. The released material is predominantly of 1–2000 daltons in molecular weight and appears to have been derived from a group of transported peptides of about the same size. The possibility is raised that these data may reflect the existence of a peptidergic second-order neurosecretory pathway in this nervous system.  相似文献   

11.
Abstract: Using dissociated rat carotid body (CB) cultures, we compared levels of extracellular dopamine (DA) around oxygen-sensitive glomus cells grown for ~12 days in normoxia (Nox; 20% O2), chronic hypoxia (CHox; 6% O2), or chronic nicotine (CNic; 10 µM nicotine, 20% O2), with or without acetylcholine (ACh) receptor (AChR) agonists/antagonists and blockers of DA uptake. In Nox cultures, extracellular DA, determined by HPLC and normalized to the number of tyrosine hydroxylase-positive glomus cells present, was augmented by acute (~15-min) exposure to hypoxia (5% O2; ~6× basal), high extracellular K+ (30 mM; ~10× basal), nomifensine (1 µM; a selective DA uptake inhibitor; ~3× basal), and nicotine (100 µM; ~5× basal), but not methylcholine (300 µM; a specific muscarinic agonist). In contrast, in CHox cultures where basal DA release is markedly elevated (~9× control), the stimulatory effect of high K+ (3–4× basal) and acute hypoxia (~2× basal) on DA release persisted, but nicotine and nomifensine were no longer effective and methylcholine had a partial inhibitory effect. In CNic cultures, basal DA levels were also elevated (~9× control), similar to that in CHox cultures; however, although acute hypoxia had a stimulatory effect on DA release (~2× basal), nicotine, nomifensine, and high K+ were ineffective. The elevated basal DA in both CHox and CNic cultures was attenuated by acute or chronic treatment with mecamylamine (100 µM), a nicotinic AChR (nAChR) antagonist. In addition, long-term (16-h), but not acute (15-min), treatment with the muscarinic antagonist atropine (1 µM) produced an additional enhancement of basal DA levels in CHox cultures. Thus, after chronic hypoxia or nicotine in vitro, extracellular DA levels around CB chemoreceptor cell clusters appear to be set by a variety of factors including released ACh, positive and negative feedback regulation via nAChRs and muscarinic AChRs, respectively, and modulation of DA transporters. These results provide insight into roles of endogenous transmitters in the adaptation of CB chemoreceptors to chronic hypoxia and suggest pathways by which neuroactive drugs, e.g., nicotine, can interfere with the protective chemoreflex response against hypoxia.  相似文献   

12.
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms caused by the loss of dopaminergic (DA) cells and consequently dopamine release in the nigrostriatal system. In vivo and in vitro 6-hydroxydopamine (6-OHDA) PD models are widely used to study the effect of striatal dopamine depletion as well as novel neuroprotective or restorative therapeutic strategies for PD. In the present study, we investigated in vitro the toxicity of 6-OHDA on DA neurons derived from E14 rat ventral mesencephalon (VM) and the neuroprotective efficiency of erythropoietin (Epo) on VM-derived cell cultures against 6-OHDA toxicity. Using E14 VM-derived DA-rich primary cultures, we could demonstrate that 6-OHDA toxicity works in a time-and concentration-dependent way, and leads to cell death not only in DA cells but also in non-DA cells in direct relation to concentration and incubation times. In addition, we found that 6-OHDA toxicity induces caspase-3 activation and an increment of intracellular reactive oxygen species (ROS) in VM-derived cultures. When 6-OHDA-treated VMs were cultured in the presence of the anti-apoptotic protein erythropoietin (Epo), the total neuronal population, including the DA neurons, was protected. However, untreated VM cultures exposed to Epo showed an increase in the total neuronal population, but not an additional increase in DA neuron cell number.These findings suggest that 6-OHDA toxicity is time and concentration-dependent and does not exclusively affect DA neurons. In high concentration and long incubation times, 6-OHDA influences the survival of other neuronal and non-neuronal cell populations derived from the VM cultures. 6-OHDA toxicity induces caspase-3 activation, indicating cell death via the apoptotic pathway which could be restricted or even prevented by pre-exposure to Epo, known to interact via the apoptotic pathway. Our results support and expand on previous findings showing that Epo is an interesting candidate molecule to mediate neuroprotective effects on DA neurons in PD. Furthermore, it could be used in promoting the survival of DA neurons after transplantation in clinical trials.  相似文献   

13.
Abstract: The ability of estrogen to modulate mesolimbic dopamine (DA) was examined using in vivo voltammetry. Estrogen priming (5 μg, 48 h) of ovariectomized (ovx) female rats resulted in a slight decrease in K+-stimulated DA release measured in the nucleus accumbens: this decrease was accompanied by a significant increase in both DA reuptake and DA clearance times. Following estrogen priming nomifensine, a potent inhibitor of the DA uptake carrier, was still able to potentiate K+-stimulated DA release and alter the time course of DA availability, but the response was attenuated compared with ovx controls. Direct infusion of 17β-estradiol hemisuccinate (17β-E, 20–50 pg) into the nucleus accumbens resulted in a biphasic potentiation of K+-stimulated release. An initial increase in release was observed 2 min after 17β-E infusion; this increase, although reduced by 15 min, was still significantly higher than control values. A subsequent potentiation was observed 60 min after the initial 17β-E infusion; this response remained for at least an additional 60 min. Nomifensine did not significantly alter K+-stimulated DA release following 17β-E infusion, but was still able to potentiate the total time DA was available extracellularly. These data suggest that the mesolimbic A10 DA neurons that terminate in the nucleus accumbens can be modulated in vivo by estrogen and that this modulation may be mediated by both genomic (long term) and nongenomic (short term) mechanisms.  相似文献   

14.
Abstract— The effects of several inhibitors, including vinblastine and colchicine, on the accumulation of a number of putative transmitters by a rat brain synaptosomal preparation and their subsequent release by excess K+ was examined. In addition, the effect of the alkaloids on the ATPase activity of the actomyosin-like protein, neurostenin, isolated from the synaptosomal preparation, was studied. The uptakes of radioactive glutamate, GABA, dopamine and norepinephrine were energy-dependent, as evidenced by their susceptibility to 0.01 mM carbonyl cyanide m-chlorophenylhydrazone (Cl-CCP), 01 mM ouabain and temperature. The active accumulations of GABA, dopamine and norepinephrine were also greatly inhibited by 1 mM6-hydroxydopamine (6-OHDA), 01 mM mersalyl, 0.05–0.25mM vinblastine and 0.1–1.0 mM colchicine. Vinblastine was approximately 10-fold more potent (K1, ?0.1 mM) than colchicine as an inhibitor. The release of actively accumulated dopamine or norepinephrine by excess K+ (increasing the [K+] from 5 to 30 mM) was inhibited somewhat when vinblastine was present during the entire incubation period. If the synaptosomes were preloaded with the radioactive compounds prior to addition of vinblastine, there was no discernible effect on the relative amount of material released by excess K+. However, the addition of inhibitor under the latter conditions caused a leakage of radioactivity into the medium even without excess K+ being present. Glutamate accumulation was somewhat different from that of GABA, dopamine or norepinephrine. Although it required energy for uptake, 6-OHDA, mersalyl, vinblastine or colchicine were not inhibitory. Studies of the oxidative metabolism of glutamate and GABA by this synaptosomal preparation indicated that the mechanisms of inhibition by vinblastine was not attributable to a metabolic effect. Both vinblastine and colchicine inhibited the Mg2+-stimulated, but not the Ca2+-activated ATPase of neurostenin. This effect was probably attributable to an interaction of the vinblastine with the neurin moiety of this actomyosin-like protein. We suggest that the inhibitory phenomena exhibited by vinblastine and colchicine in this synaptosomal preparation arose from the effect of these alkaloids on the neurin associated with the synaptic membrane.  相似文献   

15.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

16.
Ethanol (10–200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with [3H]dopamine (DA) and [14C]choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since [14C]acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that -aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing [3H]DA release into the cytoplasm. K+-stimulated release of [3H]DA and [14C]ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of [3H]DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of [3H]DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.  相似文献   

17.
The effects of the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) on stimulus-evoked dopamine release were studied in PC12 cells. Pretreatment of the cells with TPA resulted in an enhancement of dopamine release which could be further stimulated by high concentrations of K+, A23187, but not with carbamylcholine. TPA-dependent, high-K+-evoked enhancement of dopamine release was studied in detail: a maximum release was observed (169% of control) in response to 50 mM KCl upon treatment with 10−7 M TPA for 5 min at 37°C. This enhancement of dopamine release was associated with the concomitant reduction of the concentration rise of intracellular Ca2+ ([Ca2+]i) induced by a high concentration of K+ monitored by a fluorescent indicator, fura2. Thus, these data provide an example for alteration in the efficiency of stimulus-secretion coupling as pointed out in our previous paper. Moreover, we have shown that nicardipine, CdCl2, and CoCl2 inhibit high-K+-evoked dopamine release more effectively in TPA treated cells than that of untreated cells, and that the TPA-dependent, high-K+-evoked dopamine release observed in TPA treated cells is completely abolished by the presence of nicardipine, Cd2+ or Co2+, but is only partially inhibited in the presence of verapamil. These relevant findings suggest the possible involvement of protein kinase C in regulating the efficiency of a high-K+-evoked dopamine release through the modification of nicardipine-sensitive Ca2+ channels.  相似文献   

18.

Background  

This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied.  相似文献   

19.
The potassium-stimulated release of acetylcholine (ACh), glutamate (GLU) and dopamine (DA) from mouse striatal slices was studied during anoxia and/or 3,4-diaminopyridine (DAP) treatment. Anoxia, in the presence of calcium, increased DA and GLU release, but depressed ACh release. Omission of calcium from an anoxic incubation further stimulated GLU and DA release and impaired ACh release. Under normoxic conditions, DAP (100 M) increased the release of all three neurotransmitters; the sensitivity of the slices to DAP changed with the presence or absence of an acetylcholinesterase inhibitor in the preincubation media. During an anoxic incubation, DAP did not ameliorate the anoxic-induced, K+-stimulated impairment of ACh release, but significantly reduced the K+-stimulated release of GLU and DA. These results are consistent with the hypothesis that hypoxia induces a presynaptic deficit that may underlie postsynaptic ischemic-induced changes. Amelioration of these presynaptic alterations in neurotransmitter release may be an effective approach to preventing hypoxic-induced damage.  相似文献   

20.
Potassium fluxes across the blood-brain barrier of the cockroach Periplaneta americana were measured using the scanning ion-selective microelectrode technique. In salines containing 15 mM or 25 mM K+, an efflux of K+ from the ganglia of isolated nerve cords was counterbalanced by an influx across the connectives. Metabolic inhibition with CN resulted in an increase in K+ efflux across both the ganglia and the connectives. Depletion of K+ by chilling the nerve cords in K+-free saline was associated with subsequent K+ influx across the connectives in K+-replete saline at room temperature. There were dramatic increases in K+ efflux across both ganglia and connectives when the nerve cords were exposed to the pore-forming antibiotic amphotericin B. K+ fluxes across the ventral nerve cord were also altered when paracellular leakage was augmented by transient exposure to 3 M urea. K+ efflux was reduced by the K+ channel blockers Ba2+ and tetraethylammonium or by exposure to Ca2+-free saline and K+ efflux from the ganglia was increased by addition of ouabain to the bathing saline. The results provide direct support for a model proposing that K+ is cycled through a current loop between the ganglia and the connectives and that both the Na+/K+-ATPase and K+ channels are implicated in extracellular K+ homeostasis within the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号