首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two new series of compounds were designed and synthesized as potent PARP-1 inhibitors. These compounds were evaluated for PARP-1 enzyme and cellular inhibitory activities. All efforts lead to the identification of 9k (named as LG-12) with efficient potency both for PARP-1 and BRCA1 deficient MDA-MB-436 cells. Additionally, the novel PARP-1 inhibitor LG-12 is an efficient chemosensitizer, which could potentiate the anti-cancer effect of TMZ. Our data presented herein provide a comprehensive preclinical in vitro evaluation of the potential therapeutic efficacy and potency of chemotherapeutic agent-PARP-1 inhibitor combinations for LG-12. The combined results indicated that LG-12 could be a promising candidate for further study.  相似文献   

3.
Early studies demonstrated that over expression of indoleamine 2,3-dioxygenase (IDO1) in tumor microenvironment results in tumor immune escape. Herein, in order to simplify the structure of two kinds of IDO1 inhibitors from marine alkaloid, Exiguamine A and Tsitsikammamines, we designed, synthesized a series of 1H-indole-4,7-dione derivatives and evaluated their inhibitory activity in IDO1 enzyme and in IFN-γ stimulated Hela cells in vitro. The structure-activity relationship demonstrated that 5-(pyridin-3-yl)-1H-indole-4,7-dione is a promising scaffold for IDO1 inhibitors and most compounds with this core showed moderate inhibition potency at micromole level. Our further enzyme kinetics experiments reveal that these new developed compounds might act as reversible competitive inhibitors of IDO1.  相似文献   

4.
With the aim to discover novel HDAC inhibitors with high potency and good safety profiles, we have designed a small library based on a N-hydroxy-(4-oxime)-cinnamide scaffold. We describe the synthesis of these novel compounds and some preliminary in vitro cytotoxic activity on three tumor cell lines, NB4, H460 and HCT116, as well as their inhibitory activity against class I, II and IV HDAC. Several 4-oxime derivatives demonstrated a promising inhibitory activity on HDAC6 and HDAC8 coupled to a good selectivity profile.  相似文献   

5.

Background

Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs.

Methodology/Principal Findings

Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains.

Conclusions

We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.  相似文献   

6.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase after exposure to pro-inflammatory stimuli and, therefore, represents a novel target for therapeutic treatment of acute and chronic inflammatory disorders. It is essential to identify mPGES-1 inhibitors with novel scaffolds as new leads or hits for the purpose of drug design and discovery that aim to develop the next-generation anti-inflammatory drugs. Herein we report novel mPGES-1 inhibitors identified through a combination of large-scale structure-based virtual screening, flexible docking, molecular dynamics simulations, binding free energy calculations, and in vitro assays on the actual inhibitory activity of the computationally selected compounds. The computational studies are based on our recently developed three-dimensional (3D) structural model of mPGES-1 in its open state. The combined computational and experimental studies have led to identification of new mPGES-1 inhibitors with new scaffolds. In particular, (Z)-5-benzylidene-2-iminothiazolidin-4-one is a promising novel scaffold for the further rational design and discovery of new mPGES-1 inhibitors. To our best knowledge, this is the first time a 3D structural model of the open state mPGES-1 is used in structure-based virtual screening of a large library of available compounds for the mPGES-1 inhibitor identification. The positive experimental results suggest that our recently modeled trimeric structure of mPGES-1 in its open state is ready for the structure-based drug design and discovery.  相似文献   

7.
Fatty acid amide hydrolase (FAAH) has attracted significant attention due to its promise as an analgesic target. This has resulted in the discovery of numerous chemical classes as inhibitors of this potential therapeutic target. In this paper we disclose a new series of novel FAAH irreversible azetidine urea inhibitors. In general these compounds illustrate potent activity against the rat FAAH enzyme. Our SAR studies allowed us to optimize this series resulting in the identification of compounds 13 which were potent inhibitors of both human and rat enzyme. This series of compounds illustrated good hydrolase selectivity along with good PK properties.  相似文献   

8.
Currently, it is in urgent need to develop novel selective PDE4 inhibitors with novel structural scaffolds to overcome the adverse effects and improve the efficacy. Novel 1-phenyl-3,4-dihydroisoquinoline amide derivatives were developed as potential PDE4 inhibitors based on the structure-based drug design and fragment identification strategy. A SARs analysis was performed in substituents attached in the C-3 side chain phenyl ring, indicating that the attachment of methoxy group or halogen atom substitution at the ortho-position of the phenyl ring was helpful to enhance both inhibitory activity toward PDE4B and selectivity. Compound 15 with excellent selectivity, exhibited the most potent inhibition in vitro and in vivo, which is a promising lead for development of a new class of selective PDE4 inhibitors.  相似文献   

9.
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion.In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1′ pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.  相似文献   

10.
Hedgehog signaling pathway inhibitors are emerging as new therapeutic intervention against cancer. A novel series of N-(2-pyrimidinylamino) benzamide derivatives as hedgehog signaling pathway inhibitors were designed and synthesized. Most compounds presented significant inhibitory effect on hedgehog signaling pathway, among which 21 compounds exhibited more potent than vismodegib. Furthermore, compound 6a showed moderate pharmacokinetic properties in vivo, representing a promising lead compound for further exploration.  相似文献   

11.
Previous investigations identified 2′-C-Me-branched ribo-C-nucleoside adenosine analogues, 1, which contains a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base, and 2, which contains an imidazo[2,1-f][1,2,4]triazin-4-amine heterocyclic base as two compounds with promising anti-HCV in vitro activity. This Letter describes the synthesis and evaluation of a series of novel analogues of these compounds substituted at the 2-, 7-, and 8-positions of the heterocyclic bases. A number of active new HCV inhibitors were identified but most compounds also demonstrated unacceptable cytotoxicity. However, the 7-fluoro analogue of 1 displayed good potency with a promising cytotherapeutic margin.  相似文献   

12.
Drugs of cancer based upon ionizing radiation or chemotherapeutic treatment may affect breaking of DNA double strand in cell. DNA-PK enzyme has emerged as an attractive target for drug discovery efforts toward DNA repair pathways. Hence, the search for potent and selective DNA-PK inhibitors has particularly considered state-of-the art and several series of inhibitors have been designed. In this article, a novel benchmark DNA-PK database of 43 compounds was built and described. Ligand-based approaches including pharmacophore and QSAR modeling were applied and novel models were introduced and analyzed for predicting activity test for DNA-PK drug candidates. Based upon the modeling results, we gave a report of synthesis of fifteen novel 2-((8-methyl-2-morpholino-4-oxo-4H-benzo[e][1,3]oxazin-7-yl)oxy)acetamide derivatives and in vitro evaluation for DNA-PK inhibitory and antiproliferative activities. These fifteen compounds overall are satisfied with Lipinski's rule of five. The biological testing of target compounds showed five promising active compounds 7c, 7d, 7f, 9e and 9f with micromolar DNA-PK activity range from 0.25 to 5 µM. In addition, SAR of the compounds activity was investigated and confirmed that the terminal aryl moiety was found to be quite crucial for DNA-PK activity. Moreover flexible docking simulation was done for the potent compounds into the putative binding site of the 3D homology model of DNA-PK enzyme and the probable interaction model between DNA-PK and the ligands was investigated and interpreted.  相似文献   

13.
Human α-glucosidase is an enzyme involved in the catalytic cleavage of the glucoside bond and involved in numerous functionalities of the organism, as well as in the insurgence of diabetes mellitus 2 and obesity. Thus, developing chemicals that inhibit this enzyme is a promising approach for the treatment of several pathologies. Small peptides such as di- and tri-peptides may be in natural organism as well as in the GI tract in high concentration, coming from the digestive process of meat, wheat and milk proteins. In this work, we reported the first tentative hierarchical structure-based virtual screening of peptides for human α-glucosidase. The goal of this work is to discover novel and diverse lead compounds that my act as inhibitors of α-glucosidase such as small peptides by performing a computer aided virtual screening and to find novel scaffolds for further development. Thus, in order to select novel candidates with original structure we performed molecular dynamics (MD) simulations among the 12 top-ranked peptides taking as comparison the MD simulations performed on crystallographic inhibitor acarbose. The compounds with the lower RMSD variability during the MD, were reserved for in vitro biological assay. The selected 4 promising structures were prepared on solid phase peptide synthesis and used for the inhibitory assay, among them compound 2 showed good inhibitory activity, which validated our method as an original strategy to discover novel peptide inhibitors. Moreover, pharmacokinetic profile predictions of these 4 peptides were also carried out with binary QSAR models using MetaCore/MetaDrug applications.  相似文献   

14.
3- And 4-imidazol-1-yl-methyl substituted biphenyl compounds (named as meta- and para-substituted compounds) were synthesized bearing additional substituents in 3'-/4'-position as inhibitors of P450 17 (17alpha-hydroxylase-C17,20-lyase). P450 17 is the key enzyme of androgen biosynthesis. Its inhibition is a novel therapeutic strategy for treatment of prostate cancer (PC). Twenty-nine compounds were synthesized by Ar-Mg-Br, Negishi or Suzuki aryl-aryl cross coupling and tested toward human and rat enzyme. Most of the compounds showed moderate to excellent activity against one of the enzymes (0.087 microM < or = IC50 < or = 7.7 microM (ketoconazole: 0.74 microM) for the human enzyme, 0.63 microM < or = IC50 < or = 32 microM (ketoconazole: 67 microM) for the rat enzyme). Interestingly, strong species differences were observed. In addition compounds were tested for inhibition toward P450 arom. The 3-imidazol-1-yl-methyl substituted compounds showed good inhibitory activity of P450 arom, while for the 4-substituted compounds negligible inhibition was found. For the most active group of P450 17 inhibitors, (i.e. the 4-imidazol-1-yl-methyl substituted compounds) a QSAR study was performed for inhibition of the human enzyme leading to the result that a hydrophilic substituent in 3'-/4'-position is very important. The most promising compounds (with respect to activity toward both enzymes) were tested in vivo using SD-rats for reduction of plasma testosterone concentrations 2 and 6 h after single i.p. application. The fluorine substituted compound 8c decreased the testosterone plasma concentration to castration level (after 2 h; 5 mg/kg) showing a biological half live of about 6 h.  相似文献   

15.
Pin1 (Protein interacting with NIMA1) is a peptidyl prolyl cistrans isomerase (PPIase) which specifically catalyze the conformational conversion of the amide bond of pSer/Thr-Pro motifs in its substrate proteins and is a novel promising anticancer target. A series of new thiazole derivatives were designed and synthesized, and their inhibitory activities were measured against human Pin1 using a protease-coupled enzyme assay. Of all the tested compounds, a number of thiazole derivatives bearing an oxalic acid group at 4-position were found to be potent Pin1 inhibitors with IC50 values at low micromolar level. The detailed structure–activity relationships were analyzed and the binding features of compound 10b (IC50 5.38 μM) was predicted using CDOCKER program. The results of this research would provide informative guidance for further optimizing thiazole derivatives as potent Pin1 inhibitors.  相似文献   

16.
Targeting of protein tyrosine phosphatase-1B (PTP1B) has emerged as a promising strategy for therapeutic intervention of diabetes and obesity. Investigation of new inhibitors with good bioavailability and high selectivity is the major challenge of drug discovery program targeting PTP1B. Therefore, herein, new neutral benzene-sulfonamide containing compounds were designed, synthesized and biologically evaluated as potent PTP1B inhibitors. New series of thiazolidine, oxazolidine, thiazinan, oxazinan, oxazole, thiazole, tetrazole, cyanopyridine, chromenone, and iminochromene of benzene-sulfonamide derivatives (MSE-1 to MSE-15) were synthesized in a good yield under mild condition using sulfadiazine as a starting material. Among the synthesized compounds, MSE-13 and MSE-14 showed the most in vitro potent PTP-1B inhibitory activity (IC50 of 0.88 µM and 3.33 µM, respectively). Animal treatment by the target compounds significantly improved the insulin resistance, diminished plasma glucose level, decreased initial body weight, and normalized the serum lipid profile compared to pioglitazone, a standard PTP1B inhibitor. The molecular modeling study showed a high affinity and selectivity of our synthesized compounds to the active site and B-site of PTP1B holding hydrogen bonding, hydrophobic, and electrostatic interactions. Furthermore, Electrostatic Surface Potential (ESP) and HOMO/LUMO analysis indicated the importance of sulfamoyl moiety for PTP1B binding. In silico ADME predictions of such compounds also showed the promising pharmacokinetic and physicochemical properties. The proposed compounds could be considered a lead inhibitory scaffold to PTP1B.  相似文献   

17.
Background: N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors.Methods: We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I–V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity.Results: Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action.Conclusions: Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V.General significance: Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.  相似文献   

18.
We report a new series of inhibitors for hepatitis C virus NS5B RNA polymerase containing a constrained pentacyclic scaffold. Our SAR studies led to the identification of hexahydroindolo[2,1-a]pyrrolo[3,2-d][2]benzazepines exposing basic groups. The compounds displayed a high activity in the enzyme assay and displayed good activity in the cell-based (replicon) assay in the presence of serum proteins.  相似文献   

19.
Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH. Designed compounds which showed good predictive activity, no toxicity, and good docking score were selected for the synthesis, and in vitro screening as hDHODH inhibitors in an enzyme inhibition assay, and anticancer agents in MTT assay against cancer cell lines (HT-29 and MDA-MB-231). Synthesized compounds 7 and 14 demonstrated IC50 value of 1.56?µM and 1.22?µM, against hDHODH, respectively, and these are our lead compounds for the development of new hDHODH inhibitors and anticancer agents.  相似文献   

20.
The etiological agent of the most dangerous form of malaria, Plasmodium falciparum, has developed resistance or reduced sensitivity to the majority of the drugs available to treat this deadly disease. Innovative antimalarial therapies are therefore urgently required. P. falciparum serine protease subtilisin-like protease 1 (PfSUB1) has been identified as a key enzyme for merozoite egress from red blood cells and invasion. We present herein the rational design, synthesis, and biological evaluation of novel and potent difluorostatone-based inhibitors. Our bioinformatic-driven studies resulted in the identification of compounds 1a, b as potent and selective PfSUB1 inhibitors. The enzyme/inhibitor interaction pattern herein proposed will pave the way to the future optimization of this class of promising enzyme inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号