首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this experimental study the patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ribosomal RNA gene barcoding in combination with high-throughput sequencing. The community structure of eukaryotic assemblages and the patterns of initial succession were assessed from settlement plates deployed in a busy port for one, five and 15 days. The metabarcoding results were verified with traditional morphological identification of taxa from selected experimental plates. Metabarcoding analysis identified > 400 taxa at a comparatively low taxonomic level and morphological analysis resulted in the detection of 25 taxa at varying levels of resolution. Despite the differences in resolution, data from both methods were consistent at high taxonomic levels and similar patterns in community shifts were observed. A high percentage of sequences belonging to genera known to contain non-indigenous species (NIS) were detected after exposure for only one day.  相似文献   

2.
Microbes drive the biogeochemical cycles of marine ecosystems through their vast metabolic diversity. While we have a fairly good understanding of the spatial distribution of these metabolic processes in various ecosystems, less is known about their seasonal dynamics. We investigated the annual patterns of 21 biogeochemical relevant functions in an oligotrophic coastal ocean site by analysing the presence of key genes, analysing high-rank gene taxonomy and the dynamics of nucleotide variants. Most genes presented seasonality: photoheterotrophic processes were enriched during spring, phosphorous-related genes were dominant during summer, coinciding with potential phosphate limitation, and assimilatory nitrate reductases appeared mostly during summer and autumn, correlating negatively with nitrate availability. Additionally, we identified the main taxa driving each function at each season and described the role of underrecognized taxa such as Litoricolaceae in carbon fixation (rbcL), urea degradation (ureC), and CO oxidation (coxL). Finally, the seasonality of single variants of some families presented a decoupling between the taxonomic abundance patterns and the functional gene patterns, implying functional specialization of the different genera. Our study unveils the seasonality of key biogeochemical functions and the main taxonomic groups that harbour these relevant functions in a coastal ocean ecosystem.  相似文献   

3.
Invasive macroalgae form a substantial component of marine invaders at a global level. However, it is poorly understood how the complex interactions between local environmental conditions and life cycle dynamics contribute to invasion success from a mechanistic viewpoint. The aim of this study was to use a model (UndariaGEN) that incorporates a detailed representation of the individual heteromorphic life history stages (sporophytes and gametophytes) of the species in order to explore how interactions between these components contribute to the overall population dynamics. The latest version of the model was validated against field data from a real-life population in Brittany, France. This was followed by an assessment of the role of temperature limitations in determining its potential global range and then a more detailed examination of how environmental factors affect the life cycle dynamics of U. pinnatifida across a range of conditions characteristic of European populations. In terms of both relative abundance and recruitment, the model matches closely the patterns observed from field studies in Brittany, France (R2 = 0.98 respectively). Furthermore, the model predicted theoretical temperature limits for growth (9.1–22.5 °C) match closely the actual current global range limits for the species (9.5–22.4 °C) reported in the literature. In addition, the size of the species’ ecological niche is shown to be directly related to the amplitude in seasonal variation of temperature. This demonstrates that U. pinnatifida has a wider ecological niche in conditions of high seasonality; this finding is consistent with theories that propose the heteromorphic life cycle may have evolved as an optimal growth strategy for highly seasonal environments.  相似文献   

4.
Aims This study explores the patterns of niche differentiation in a group of seven closely related columbines (genus Aquilegia, Ranunculaceae) from the Iberian Peninsula. Populations of these columbines are subject to complex patterns of divergent selection across environments, which partly explain the taxonomic structure of the group. This suggests the hypothesis that niche divergence must have occurred along the process of diversification of the group.Methods We used MaxEnt to build environmental niche models of seven subspecies belonging to the three species of Aquilegia present in the Iberian Peninsula. From these models, we compared the environmental niches through two different approaches: ENMtools and multivariate methods.Important findings MaxEnt distributions conformed closely to the actual distribution of the study taxa. ENMtools methods failed to uncover any clear patterns of niche differentiation or conservatism in Iberian columbines. Multivariate analyses indicate the existence of differentiation along altitudinal gradients and along a gradient of climatic conditions determined by the summer precipitation and temperatures. However, climatic conditions related to winter temperature and precipitation, as well as soil properties, were equally likely to show conservatism or divergence. The complex patterns of niche evolution we found suggest that Iberian Columbines have not been significantly constrained by forces of niche conservatism, so they could respond adaptively to the fast and profound climate changes in the Iberian Peninsula through the glacial cycles of the Pleistocene.  相似文献   

5.
郭馨  黄成  林晓晴  郑欣怡  刘强  黄凌风 《生态学报》2022,42(6):2442-2460
海洋微型鞭毛虫是海洋原生生物中一类高度异质化的类群,物种多样性高,具有多种营养方式,在全球海洋生态系统中占据广阔的生态位,在生物地球化学循环中发挥着关键作用。然而关于其生物多样性和群落结构的认识十分有限,特别是有关环境因子与其生物地理分布关系的研究更为罕见。为了探究微型鞭毛虫群落多样性、群落结构以及影响其生物地理分布格局的环境因素,将高通量测序技术与传统的显微镜观测方法相结合,全面调查了中国东海春季和秋季微型鞭毛虫的群落特征,并深入探讨了与环境因子之间的关系。结果表明:东海微型鞭毛虫的丰度平均为2.27×10~3个/mL,表现为近岸处较高、随离岸距离的增加而下降的趋势;Shannon多样性指数呈现表层低于底层、近岸区低于陆架区的特征,反映了生物群落的稳定程度以及对环境条件的适应程度;不同类群的鞭毛虫具有各自独特的营养模式和相对固定的粒级,表现出对温度、盐度、溶解氧等环境因素的不同响应,从而使群落的物种组成和分布模式呈现明显的季节变化和生境差异。研究结果可为深入认识东海海洋微型鞭毛虫的群落结构、分布格局以及环境影响因素提供理论依据。  相似文献   

6.
Three sympatric fossil cercopithecoid genera (Cercopithecoides, Parapapio, and Theropithecus) occur in Members 3 and 4 at the Makapansgat Limeworks hominin locality, South Africa, and their presence in a single ecosystem suggest a certain degree of ecological and/or dietary differentiation between taxa. Here, we explore the extent of dietary niche separation amongst these taxa using stable isotope (13C/12C, 18O/16O) and trace-element (Sr, Ba, Ca) analyses of fossil tooth enamel. In particular we searched for evidence of subtle niche separation between the more closely related, morphologically similar taxa of the genus Parapapio, as uncertainties exist around their taxonomy and taxonomic identification. Given these uncertainties, craniometric analyses were also performed to ground the dietary interpretations in a morphological context. The results found no clear taxonomic signal in the craniometric data for the Parapapio sample, and further indicate that this sample was no more variable morphologically than a single, geographically circumscribed, extant chacma baboon sample. In contrast, two overlapping dietary ecologies were found within this same Makapansgat Parapapio sample. Additionally, two widely differing dietary ecologies were found within the Cercopithecoides williamsi sample, while results for Theropithecus darti indicate a predominantly C4 diet. Hence, although biogeochemical dietary indicators point towards distinct dietary ecologies within and between fossil genera at Makapansgat, within the genus Parapapio disjunctions exist between the dietary categories and the taxonomic assignment of specimens.  相似文献   

7.
1. Differences among communities in taxonomic composition – beta diversity – are frequently expected to result from taxon‐specific responses to spatial variation in ecological conditions, through niche partitioning. Such process‐derived patterns are in sharp contrast to arguments from neutral theory, where taxa are ecologically equivalent and beta diversity results primarily from dispersal limitation. 2. Here, we compared beta diversity among assemblages of damselflies (Odonata: Zygoptera), for which previous experiments have shown that niche differences maintain genera within a community, but patterns of relative abundance for species within each genus are shaped primarily by neutral dynamics. 3. Using null‐model and ordination‐based methods, we find that both genera and (in contrast to neutral theory) species assemblage composition vary across the landscape in a deterministic fashion, shaped by environmental and spatial factors. 4. While the observed patterns in species composition conflict with theory, we suggest that this a result of weak ecological filters acting to produce spatial variation in assemblages of ecologically similar species undergoing ecological drift within communities. Such patterns are especially likely in systems of relatively weak dispersers like damselflies.  相似文献   

8.
Ecological memory describes how antecedent conditions drive the dynamics of an ecological system. Palaeoecological records are paramount to understand ecological memory at millennial time-scales, but the concept is widely neglected in the literature, and a formal approach is lacking. Here, we fill such a gap by introducing a quantitative framework for ecological memory in palaeoecology, and assessing how data constraints and taxa traits shape ecological memory patterns. We simulate the population dynamics and pollen abundance of 16 virtual taxa with different life and niche traits as a response to an environmental driver. The data is processed to mimic a realistic sediment deposition and sampled at increasing depth intervals. We quantify ecological memory with Random Forests, and assess how data properties and taxa traits shape ecological memory. We find that life-span and niche features modulate the relative importance of the antecedent values of the driver and the pollen abundance over periods of 240 yr and longer. Additionally, we find that accumulation rate and decreasing pollen-sampling resolution inflate the importance of antecedent pollen abundance. Our results suggest that: 1) ecological memory patterns are sensitive to varying accumulation rates. A better understanding on the numerical basis of this effect may enable the assimilation of ecological memory concepts and methods in palaeoecology; 2) incorporating niche theory and models is essential to better understand the nature of ecological memory patterns at millennial time-scales. 3) Long-lived generalist taxa are highly decoupled from the environmental signal. This finding has implications on how we interpret the abundance-environment relationship of real taxa with similar traits, and how we use such knowledge to forecast their distribution or reconstruct past climate.  相似文献   

9.
Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long‐term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade‐long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%–82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche‐based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.  相似文献   

10.
Whether bacteria display spatial patterns of distribution and at which level of taxonomic organization such patterns can be observed are central questions in microbial ecology. Here we investigated how the total and relative abundances of eight bacterial taxa at the phylum or class level were spatially distributed in a pasture by using quantitative PCR and geostatistical modelling. The distributions of the relative abundance of most taxa varied by a factor of 2.5–6.5 and displayed strong spatial patterns at the field scale. These spatial patterns were taxon‐specific and correlated to soil properties, which indicates that members of a bacterial clade defined at high taxonomical levels shared specific ecological traits in the pasture. Ecologically meaningful assemblages of bacteria at the phylum or class level in the environment provides evidence that deep branching patterns of the 16S rRNA bacterial tree are actually mirrored in nature.  相似文献   

11.
Understanding how ecological traits have changed over evolutionary time is a fundamental question in biology. Specifically, the extent to which more closely related organisms share similar ecological preferences due to phylogenetic conservation – or if they are forced apart by competition – is still debated. Here, we explored the co-occurrence patterns of freshwater cyanobacteria at the sub-genus level to investigate whether more closely related taxa share more similar niches and to what extent these niches were defined by abiotic or biotic variables. We used deep 16S rRNA gene amplicon sequencing and measured several abiotic environmental parameters (nutrients, temperature, etc.) in water samples collected over time and space in Furnas Reservoir, Brazil. We found that relatively more closely related Synechococcus (in the continuous range of 93%–100% nucleotide identity in 16S) had an increased tendency to co-occur with one another (i.e. had similar realized niches). This tendency could not be easily explained by shared preferences for measured abiotic niche dimensions. Thus, commonly measured abiotic parameters might not be sufficient to characterize, nor to predict community assembly or dynamics. Rather, co-occurrence between Synechococcus and the surrounding community (whether or not they represent true biological interactions) may be a more sensitive measure of realized niches. Overall, our results suggest that realized niches are phylogenetically conserved, at least at the sub-genus level and at the resolution of the 16S marker. Determining how these results generalize to other genera and at finer genetic resolution merits further investigation.  相似文献   

12.
13.
Spatial and temporal dynamics of macroinvertebrate communities have usually been linked to several environmental and anthropic factors. The aim of this study is to elucidate how important are these factors in structuring macroinvertebrate communities from temperate regions. Regarding the macroinvertebrate number of taxa, the Habitat Template Model, the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis will be tested in order to know how important the diversity of instream elements and the hydrological disturbance frequency are in defining the macroinvertebrate taxonomic richness. Thus, the structure and composition of macroinvertebrate communities were analysed in nine sites of the Pas River basin, a temperate Atlantic basin in northern Spain, during winter, spring, summer and autumn 2005, together with water physicochemical and environmental characteristics. Macroinvertebrate abundance increased downstream and during summer, probably favoured by lower hydraulic stress and water organic enrichment. As predicts the Habitat Template Model, the macroinvertebrate number of taxa was related to habitat heterogeneity. However, no clear relationship amongst macroinvertebrate richness and water quality was found. The macroinvertebrate taxonomic richness did not correspond exactly with the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis because it was relatively high in the absence of hydrological disturbances (summer). Thus, disturbance events may play a secondary role in determining the seasonal dynamic of the number of taxa. However, hydrological disturbances can be considered the most important factors explaining the seasonal pattern of macroinvertebrate abundance. On the other hand, spatial patterns of macroinvertebrate community structure and composition were mainly determined by resource availability, hydraulic conditions, habitat heterogeneity and human alterations, whilst hydrological predictability and resource availability might play a major role in determining seasonal dynamics.  相似文献   

14.
Marine microbes often show a high degree of physiological or ecological diversity below the species level. This microdiversity raises questions about the processes that drive diversification and permit coexistence of diverse yet closely related marine microbes, especially given the theoretical efficiency of competitive exclusion. Here, we provide insight with an 8-year time series of diversity within Synechococcus, a widespread and important marine picophytoplankter. The population of Synechococcus on the Northeast U.S. Shelf is comprised of six main types, each of which displays a distinct and consistent seasonal pattern. With compositional data analysis, we show that these patterns can be reproduced with a simple model that couples differential responses to temperature and light with the seasonal cycle of the physical environment. These observations support the hypothesis that temporal variability in environmental factors can maintain microdiversity in marine microbial populations. We also identify how seasonal diversity patterns directly determine overarching Synechococcus population abundance features.  相似文献   

15.
Tropical dry forests are characterized by punctuated seasonal precipitation patterns that drive primary production and the availability of fruits, seeds, flowers, and insects throughout the year. In environments in which the quantity and quality of food resources varies seasonally, consumers should adjust their foraging behavior to maximize energy intake while minimizing overlap with competitors during periods of low food availability. Here, we investigated how the diets of frugivorous bats in tropical dry forests of NW Mexico varied in response to seasonal availability and how this affected dietary overlap of morphologically similar species. We performed stable isotope analyses to understand temporal and interspecific patterns of overall isotopic niche breadth, trophic position, and niche overlap in the diet of six frugivorous species of closely related New World leaf-nosed bats (family Phyllostomidae, subfamily Stenodermatinae). We estimated seasonal changes in resource abundance in two complementary ways: (a) vegetative phenology based on long-term remote sensing data and (b) observational data on food availability from previously published insect and plant fruiting surveys. In all species, there was a consistent pattern of reduced isotopic niche breadth during periods of low food availability. However, patterns of niche overlap varied between morphologically similar species. Overall, results from our study and others suggest that seasonal food availability likely determines overall dietary niche breadth in Phyllostomidae and that despite morphological specialization, it is likely that other mechanisms, such as opportunistic foraging and spatiotemporal niche segregation, may play a role in maintaining coexistence rather than simply dietary displacement.  相似文献   

16.
Aim The purpose of the study was to assess the degree of floristic differentiation between tropical dry forest (TDF) and savanna occurring in a single landscape. This comparison provides information on the responses of vegetation to the prevailing environmental conditions, while it also allows us to make inferences about large‐scale events and processes, both biogeographical and evolutionary. Our approach included three levels of analysis: (1) taxonomic, (2) morphological and (3) vegetational. Location The seasonal dry tropical landscape in the Nizanda region, Oaxaca State, southern Mexico. The landscape comprises a complex vegetation mosaic in which tropical dry forest and savannas are the most conspicuous components. Methods Comparisons between TDF and savanna were based on inventories for these communities produced after 8 years of botanical survey. At the taxonomic level, the relative representation of taxa of different hierarchical levels in each community was examined. Morphological analyses required the classification of species on each of three criteria: (1) growth form, (2) life form and (3) growth habit. Vegetation level analysis was based on the frequencies of taxa in one hundred 100‐m2 composition plots with which matrices of binary data were constructed for species, genera and families. These were subjected to classification analysis with Ward's method and using Euclidean distances as the dissimilarity algorithm. Results The combined flora for both communities comprised 600 species, 375 genera and 94 families; between them they shared 31, 40 and 34 taxa, respectively. The corresponding Sørensen similarity values were 10%, 21% and 72%, respectively. Ranking genera and families according to their species richness displayed large differences between savanna and TDF. Large differences between these communities were observed for Acanthaceae, Cactaceae, Euphorbiaceae and Mimosaceae, whereas Fabaceae and Asteraceae had similar high ranks according to the species richness in the two systems. The growth form spectrum diverged between the two communities, with TDF having more trees, shrubs and climbers. Savanna was characterised by forbs and graminoid herbs. Growth habit spectra revealed a clear dominance of herbaceous and suffruticose plants in savanna, and of woody elements and epiphytes in TDF. Regarding Raunkiaer's life forms, savanna had relatively more hemicryptophytes, and TDF more phanerophytes. Classification analyses showed that savanna and TDF forest samples kept their identities, regardless of taxonomic level (species, genera and families) at which the analyses were performed. Main conclusions The TDF and savanna of Nizanda represent two floristic systems with a large degree of differentiation at all taxonomic levels and patterns of morphological attributes. This suggest that the two floristic sets have evolved independently for extended periods of time, despite their close proximity. One important implication of this floristic differentiation is the large joint contribution made by these communities to the regional flora.  相似文献   

17.
Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.  相似文献   

18.
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.  相似文献   

19.
For identifying the potential surrogate of periphytic ciliate communities for monitoring marine water quality, the different taxonomic resolutions/taxa as surrogates and different data transformations were studied based on two datasets of ciliate communities in Korean coastal waters. Multivariate analyses showed that: (1) a dominant Zoothamnium duplicatum significantly masked the temporal patterns of periphytic ciliate community; (2) the order level resolution maintained sufficient information to evaluate the efficient patterns of ciliate communities in response to environmental impacts; (3) the vagile-ciliate assemblage at species-level resolution was as costly as whole periphytic ciliate communities without Z. duplicatum at the order level; and (4) the severity of data transformations played a crucial role for effectiveness of surrogates, e.g., heavy transformation for species level and mild for higher. These results suggest that the use of lower taxonomic resolutions is time-efficient and would allow improving sampling strategies of large spatial/temporal scale monitoring researches in the marine ecosystem.  相似文献   

20.
Taxonomic level, trophic biology and the regulation of local abundance   总被引:2,自引:0,他引:2  
  • 1 Taxocenes — monophyletic ecological assemblages — are a key focus of macroecology. Abundance (individuals per area) is a basic property of taxocenes but has received less attention than diversity, although the two are probably related. Abundance reflects a taxocene’s ability to harvest and sequester available energy and divide it among individuals. This paper explores how two properties of all taxocenes — trophic makeup and taxonomic level (e.g. genus, tribe, subfamily, family … ) — may contribute to patterns of local abundance at geographical scales.
  • 2 Forty‐nine ground ant taxocenes, in habitats ranging from New World deserts to rain forests, were surveyed along a three‐orders of magnitude productivity gradient using transects of 30 1‐m2 quadrats at each site. Abundance — the number of nests per transect — varied over two orders of magnitude.
  • 3 Over 80% of the genera collected were omnivores. However, herbivore, omnivore, and predator taxa were added to ant taxocenes in roughly 1 order of magnitude steps up the productivity gradient. Specialist detritivores were added last.
  • 4 Net primary productivity and mean monthly temperature both consistently entered regression models predicting abundance. However, while productivity was the dominant predictor of abundance for higher taxa (families, subfamilies), temperature was the dominant predictor of abundance for lower taxa (tribes, genera). The answer to the question ‘What regulates the abundance of a taxocene?’ is thus sensitive to the taxonomic level of analysis.
  • 5 These data support the following scenario. Lower taxa are abiotic specialists given the insufficient number of genomes and generations required for the exploration of the entire abiotic envelope. Higher taxa, in contrast, consist of suites of abiotic specialists arrayed along the entire productivity gradient, with access to productivity everywhere the taxon occurs. If this scenario is true, individual species may respond to global changes in temperature; the higher taxa they belong to may most respond to global changes in productivity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号