首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 采用模式动物斑马鱼作为研究对象,观察氯丙嗪(chlorpromazine,CPZ)暴露对胚胎和幼鱼早期神经发育的影响.方法 在一般毒性评价的基础上,通过整体胚胎细胞凋亡检测和脑组织病理学检查,了解CPZ对神经发育的器质性改变;采用神经行为学方法,包括幼鱼触动逃避反应、自发运动以及惊恐逃避反射等,研究氯丙嗪暴露所致的神经发育功能性障碍.结果斑马鱼胚胎受精后6 h(6 hpf)~72 hpf暴露于CPZ(≥5 mg/L)可引起胚胎和幼鱼死亡、致畸和幼鱼孵化延迟,并呈浓度和时间依赖性;采用吖啶橙染色检测36 hpf整体胚胎凋亡细胞,发现凋亡细胞主要集中在胚胎中脑、后脑、丘脑以及中后脑连接区、脊索和尾部等处;脑组织病理学检测发现,7dpf幼鱼颅腔增大、脑体积减小、脑细胞缩小且细胞间隙增宽.6~72 hpf CPZ(≥0.0625 mg/L)暴露后,幼鱼神经行为学研究发现,CPZ(≥0.125 mg/L)可引起3dpf幼鱼触觉运动能力下降;CPZ(≥0 5 mg/L)可浓度依赖性地抑制幼鱼自发运动,并出现僵直不动、震颤或快速刻板式转圈运动等行为改变;光惊恐实验中,暗环境下各暴露组幼鱼对突发强光刺激均表现为惊跳逃避,并且暗-光交替期运动加速度变化与对照组无显著差异;在撤除光源后,1mg/L和2 mg/L暴露组幼鱼暗适应时程缩短,而0.125 mg/L和0.25 mg/L暴露组暗适应时程延长,提示CPZ对外界刺激引发的幼鱼活跃游动有抑制和促进双重毒性作用.结论 CPZ暴露对斑马鱼胚胎和幼鱼具有明显的神经发育毒性作用.模式动物斑马鱼作为一种高通量筛选模型在外源性化合物神经发育毒性评价中具有较好的应用前景.  相似文献   

2.
Abstract: In this report we characterize the toxicity of the excitatory amino acid l -glutamate with respect to dopaminergic neurons cultured from embryonic rat mesencephalon. We also demonstrate that two growth factors, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), can protect these neurons from damage. Micromolar concentrations of l -glutamate, as well as agonists that specifically activate N -methyl- d -aspartate (NMDA) and non-NMDA receptors, are all toxic to dopamine neurons in a concentration-dependent manner, as reflected by decreases in high-affinity dopamine uptake and confirmed by decreases in numbers of tyrosine hydroxylase-immunoreactive neurons. Although the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione could attenuate the effects of quisqualate, treatment with this antagonist could not eliminate the effects of glutamate itself. Similarly, (±)-2-amino-5-phosphonopentanoic acid was effective against NMDA toxicity but could not protect cells from quisqualate toxicity. Thus, each type of receptor could mediate neurotoxicity independently of the other. The presence of EGF or bFGF in the culture medium conferred a relative resistance of dopaminergic neurons to glutamate and quisqualate neurotoxicity by increased glutamate transport. However, treatment of the cultures with l - trans -pyrrolidine-2,4-dicarboxylic acid, an inhibitor of glutamate transport, attenuated but did not eliminate the protective effects of both growth factors against glutamate toxicity. When cultures were incubated with conditioned medium from growth factor-treated cultures, neuroprotection was also achieved. These results suggest that both EGF and bFGF can protect neurons from neurotoxicity in culture by increasing the capacity of the culture for glutamate uptake as well as by the secretion of soluble factors into the medium.  相似文献   

3.
Zebrafish (Danio rerio) is now firmly recognized as a powerful research model for many areas of biology and medicine. Here, we review some achievements of zebrafish-based assays for modeling human diseases and for drug discovery and development. For drug discovery, zebrafish is especially valuable during the earlier stages of research as its represents a model organism to demonstrate a new treatment’s efficacy and toxicity before more costly mammalian models are used. This review considers some examples of known compounds which exhibit both physiological activity and toxicity in humans and zebrafish. The major advantages of zebrafish embryos consist in their permeability to small molecules added to their incubation medium and chorion transparency that enables the easy observation of the development. Assay of acute toxicity (LC50 estimation) in embryos can also include the screening for developmental disorders as an indicator of teratogenic effects. We have used the zebrafish model for toxicity testing of new drugs based on phospholipid nanoparticles (e.g. doxorubicin). Genome organization and the pathways involved into control of signal transduction appear to be highly conserved between zebrafish and humans and therefore zebrafish may be used for modeling of human diseases. The review provides some examples of zebrafish application in this field.  相似文献   

4.
The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the zebrafish embryo has been considered as an alternative model for traditional in vivo developmental toxicity screening. The use of this organism in conjunction with traditional in vivo developmental toxicity testing has the potential to reduce cost and increase throughput of testing the chemical universe, prioritize chemicals for targeted toxicity testing, generate predictive models of developmental toxicants, and elucidate mechanisms and adverse outcome pathways for abnormal development. This review gives an overview of the zebrafish embryo for pre dictive toxicology and 21st century toxicity testing. Developmental eye defects were selected as an example to evaluate data from the U.S. Environmental Protection Agency's ToxCast program comparing responses in zebrafish embryos with those from pregnant rats and rabbits for a subset of 24 environmental chemicals across >600 in vitro assay targets. Cross-species comparisons implied a common basis for biological pathways associated with neuronal defects, extracellular matrix remodeling, and mitotic arrest.  相似文献   

5.
BACKGROUND: Recent data have demonstrated that treatment with sodium benzoate (SB) leads to significant developmental defects in motor neuron axons and neuromuscular junctions in zebrafish larvae, thereby implying that SB can be neurotoxic. This study examined whether SB affects the development of dopaminergic neurons in the zebrafish brain. METHODS: Zebrafish embryos were exposed to different concentrations of SB for various durations, during which the survival rates were recorded, the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the neurons in the ventral diencephalon were detected by in situ hybridization and immunofluorescence, and the locomotor activity of larval zebrafish was measured. RESULTS: The survival rates were significantly decreased with the increase of duration and dose of SB-treatment. Compared to untreated clutch mates (untreated controls), treatment with SB significantly downregulated expression of TH and DAT in neurons in the ventral diencephalon of 3-day post-fertilization (dpf) zebrafish embryos in a dose-dependent manner. Furthermore, there was a marked decrease in locomotor activity in zebrafish larvae at 6dpf in response to SB treatment. CONCLUSIONS: The results suggest that SB exposure can cause significantly decreased survival rates of zebrafish embryos in a time- and dose-dependent manner and downregulated expression of TH and DAT in dopaminergic neurons in the zebrafish ventral diencephalon, which results in decreased locomotor activity of zebrafish larvae. This study may provide some important information for further elucidating the mechanism underlying SB-induced developmental neurotoxicity. Birth Defects Res (Part B)86: 85-91, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

6.
Dopaminergic deficiency in the brain of zebrafish was produced by systemic administration of two catecholaminergic neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the neurochemical and behavioural changes were characterized. The levels of dopamine and noradrenaline decreased significantly after the injection of MPTP and 6-OHDA. Corresponding to these changes, fish exhibited characteristic changes in locomotor behaviour, i.e. the total distance moved and velocity decreased after both neurotoxins. Tyrosine hydroxylase and caspase 3 protein levels were not altered after MPTP or 6-OHDA injections, as studied by immunohistochemistry and western blotting. The catecholaminergic cell clusters suggested to correspond to the mammalian nigrostriatal cell group displayed normal tyrosine hydroxylase immunoreactivity after the toxin treatment and did not show signs of DNA fragmentation that would indicate activation of cascades that lead to cell death. The results show that single systemic injections of MPTP and 6-OHDA induce both biochemical and behavioural changes in zebrafish, albeit failing to produce any significant morphological alteration in catecholaminergic cell clusters at the tested doses. This approach may be used for the screening of chemicals affecting the dopaminergic system. The model may be especially useful for evaluation of the role of novel genes in neurotoxicity, as a large number of zebrafish mutants are becoming available.  相似文献   

7.
The expression of at least some biomarkers of toxicity is generally thought to precede the appearance of frank pathology. In the context of developmental toxicity, certain early indicators may be predictive of later drastic outcome. The search for predictive biomarkers of toxicity in the cells (blastomeres) of an early embryo can benefit from the fact that for normal development to proceed, the maintenance of blastomere cellular integrity during the process of transition from an embryo to a fully functional organism is paramount. Actin microfilaments are integral parts of blastomeres in the developing zebrafish embryo and contribute toward the proper progression of early development (cleavage and epiboly). In early embryos, the filamentous actin (F-actin) is present and helps to define the boundary of each blastomere as they remain adhered to each other. In our studies, we observed that when blastomeric F-actin is depolymerized by agents like gelsolin, the blastomeres lose cellular integrity, which results in abnormal larvae later in development. There are a variety of toxicants that depolymerize F-actin in early mammalian embryos, the later consequences of which are, at present, not known. We propose that very early zebrafish embryos (~5-h old) exposed to such toxicants will also respond in a like manner. In this review, we discuss the potential use of F-actin disruption as a predictive biomarker of developmental toxicity in zebrafish.  相似文献   

8.
The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.  相似文献   

9.
Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. Birth Defects Research (Part C) 99:14–23, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.

Background

The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.

Methodology/Principal Findings

In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.

Conclusion

Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.  相似文献   

11.
Cylindrospermopsis raciborskii is among the most commonly recognized toxigenic cyanobacteria associated with harmful algal blooms (HAB) in freshwater systems, and specifically associated with multiple water-soluble toxins. Lipophilic metabolites from C. raciborskii, however, were previously shown to exert teratogenicity (i.e. inhibition of vertebrate development) in the zebrafish (Danio rerio) embryo model, specifically suggesting the presence of additional bioactive compounds unrelated to the currently known toxins. In the present study, a series of known teratogenic polymethoxy-1-alkenes (PMA) were identified, purified and chemically characterized from an otherwise well-characterized strain of toxigenic C. raciborskii. Although PMA have been previously identified in other cyanobacteria, this is the first time they have been identified from this recognized HAB species. Following their identification from C. raciborskii, the taxonomic distribution of the PMA was additionally investigated by chemical screening of a freshwater algal (i.e. cyanobacteria, green algal) culture collection. Screening suggests that these compounds are distributed among phylogenetically diverse taxa. Furthermore, parallel screening of the algal culture collection, using the zebrafish embryo model of teratogenicity, the presence of PMA was found to closely correlate with developmental toxicity of these diverse algal isolates. Taken together, the data suggest PMA contribute to the toxicity of C. raciborskii, as well as apparently several other taxonomically disparate cyanobacterial and green algal genera, and may, accordingly, contribute to the toxicity of diverse freshwater HAB.  相似文献   

12.
Understanding dioxin developmental toxicity using the zebrafish model   总被引:5,自引:0,他引:5  
Zebrafish (Danio rerio) have advantages over mammals as an animal model for investigating developmental toxicity. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin, TCDD), a persistent global contaminant, is the most comprehensively studied developmental toxicant in zebrafish. The hallmark responses of TCDD developmental toxicity manifested in zebrafish larvae include edema, anemia, hemorrhage, and ischemia associated with arrested growth and development. Heart and vasculature development and function are severely impaired, and jaw malformations occur secondary to inhibited chondrogenesis. The swim bladder fails to inflate, and the switch from embryonic to adult erythropoiesis is blocked. This profile of developmental toxicity responses, commonly referred to as "blue sac syndrome" because the edematous yolk sac appears blue, is observed in the larval form of all freshwater fish species exposed to TCDD at the embryonic stage of development. Components of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AHR/ARNT) signaling pathway in zebrafish have been identified and functionally characterized. Their role in mediating TCDD toxicity has been determined using morpholinos to specifically knockdown the translation of zfAHR1, zfAHR2, zfARNT1, and zfARNT2 mRNAs, respectively, and a line of zfARNT2 null mutant zebrafish has provided further insight. These studies have shown that zfAHR2 and zfARNT1 mediate TCDD developmental toxicity. In addition, the growing use of molecular and genomic tools for research on zebrafish have led to advances in our understanding of the mechanism of TCDD developmental toxicity at the molecular level, including the recent finding that toxicity is not mediated by increased cytochrome P4501A (zfCYP1A) expression.  相似文献   

13.
The goal of this research was to examine the developmental effects on zebrafish embryos (Brachydanio rerio) when cryoprotectants were directly microinjected into the yolk. Our objectives were to: (i) determine the final concentration of propylene glycol (PG) and dimethyl sulfoxide (Me(2)SO) that the embryos could tolerate without causing teratogenic effects; (ii) determine if the toxicity of Me(2)SO could be reduced by the simultaneous presence of various proportions of amides; and (iii) examine whether this intracellular cryoprotectant incorporation could reduce the cryodamage to the yolk syncytial layer (YSL) after vitrification trials. The rationale for conducting these microinjection experiments was to overcome the permeability barrier of the YSL. Intracellular PG produced better survival than Me(2)SO (P < 0.05). Embryos tolerated both 10- and 30-nl microinjections of PG, yielding final concentrations of 2.3 and 5.0 M within the yolk, resulting in 70 +/- 3 and 35 +/- 4% survival at day 5, respectively. In similar experiments with Me(2)SO, survival was lower than PG at 60 +/- 4 and 14 +/- 4% at 2.4 and 5.2 M. Unlike other cellular systems, the presence of amides, specifically acetamide or formamide, did not reduce the toxicity of Me(2)SO in zebrafish embryos (P > 0.05). During vitrification trials, we estimated a 25% dehydration of the yolk, yielding an effective PG concentration of 5.9 M. However, the incorporation of this vitrifiable concentration of PG was not sufficient to improve the postthaw morphology of the YSL (P > 0.05). Clearly, other factors need to be examined in establishing a successful vitrification protocol for zebrafish embryos.  相似文献   

14.
High nitrate levels in the environment may result in congenital defects or miscarriages in humans. Presumably, this is due to the conversion of nitrate to nitrite by gut and salivary bacteria. However, in other mammalian studies, high nitrite levels do not cause birth defects, although they can lead to poor reproductive outcomes. Thus, the teratogenic potential of nitrite is not clear. It would be useful to have a vertebrate model system to easily assess teratogenic effects of nitrite or any other chemical of interest. Here, we demonstrate the utility of zebrafish (Danio rerio) to screen compounds for toxicity and embryonic defects. Zebrafish embryos are fertilized externally and have rapid development, making them a good model for teratogenic studies. We show that increasing the time of exposure to nitrite negatively affects survival. Increasing the concentration of nitrite also adversely affects survival, whereas nitrate does not. For embryos that survive nitrite exposure, various defects can occur, including pericardial and yolk sac edema, swim bladder noninflation, and craniofacial malformation. Our results indicate that the zebrafish is a convenient system for studying the teratogenic potential of nitrite. This approach can easily be adapted to test other chemicals for their effects on early vertebrate development.  相似文献   

15.
16.
Many estuary and coastal waters are highly threatened by heavy anthropogenic pollutants. Oryzias melastigma, also called O. dancena, a marine medaka that showed sensitive response to hypoxia and estrogenic endocrine disruptors in previous studies, is becoming a sentinel species for marine ecotoxicology studies. However, the lack of strong molecular foundation and knowledge of early developmental stages hampers its practical applications. Combining our research strength on zebrafish embryos, this study revealed both morphological and molecular (at mRNA and protein levels) development of embryos of this emergent model. Whole mount immunostaining technique specific for O. melastigma was successfully developed based on zebrafish standard protocols. We demonstrated that 17 out of 61 primary antibodies, which were previously tested in zebrafish, showed specific immunoreactivity with O. melastigma. These antibodies clearly illustrated the embryonic development of target tissues (principally neurons) in this medaka. Additionally, partial cDNA fragments of 11 organ-specific marker genes were isolated according to genomic resources of zebrafish, Japanese medaka and other fishes. Of the 11 genes, 8 are widely used as organ markers and their expression patterns were remarkably similar to their homologues in zebrafish and Japanese medaka. The expression profiles of the remaining 3 genes in fish are reported for the first time. These molecular markers (17 antibodies and 11 mRNA probes) can be used as responsive indicators in environmental toxicity evaluation. Moreover, this study brought forward and demonstrated the advantage of transferring techniques and resources from one model to another to hasten the research of interest.  相似文献   

17.
The polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants. Human health concerns of these agents have largely centered upon their potential to elicit reproductive and developmental effects. Of the various congeners, BDE 49 (2,2',4,5'-tetrabromodiphenyl ether) has been poorly studied, despite the fact that it is often detected in the tissues of fish and wildlife species. Furthermore, we have previously shown that BDE 49 is a metabolic debromination product of BDE 99 hepatic metabolism in salmon, carp and trout, underscoring the need for a better understanding of biological effects. In the current study, we investigated the developmental toxicity of BDE 49 using the zebrafish (Danio rerio) embryo larval model. Embryo and larval zebrafish were exposed to BDE 49 at either 5 hours post fertilization (hpf) or 24 hpf and monitored for developmental and neurotoxicity. Exposure to BDE 49 at concentrations of 4iμ-32 μM caused a dose-dependent loss in survivorship at 6 days post fertilization (dpf). Morphological impairments were observed prior to the onset of mortality, the most striking of which included severe dorsal curvatures of the tail. The incidence of dorsal tail curvatures was dose and time dependent. Exposure to BDE 49 caused cardiac toxicity as evidenced by a significant reduction in zebrafish heart rates at 6 dpf but not earlier, suggesting that cardiac toxicity was non-specific and associated with physiological stress. Neurobehavioral injury from BDE 49 was evidenced by an impairment of touch-escape responses observed at 5 dpf. Our results indicate that BDE 49 is a developmental toxicant in larval zebrafish that can cause morphological abnormalities and adversely affect neurobehavior. The observed toxicities from BDE 49 were similar in scope to those previously reported for the more common tetrabrominated congener, BDE 47, and also for other lower brominated PBDEs, suggest that these compounds may share similarities in risk to aquatic species.  相似文献   

18.
Cytosine arabinoside (ara-C) is a nucleoside analog used in the treatment of hematologic malignancies. One of the major side effects of ara-C chemotherapy is neurotoxicity. In this study, we have further characterized the cell death induced by ara-C in sympathetic neurons. Similar to neurons undergoing trophic factor deprivation-induced apoptosis, ara-C-exposed neurons became hypometabolic before death and upregulated c-myb, c-fos, and Bim. Bax deletion delayed, but did not prevent, ara-C toxicity. Neurons died by apoptosis, indicated by the release of mitochondrial cytochrome-c and caspase-3 activation. p53-deficient neurons demonstrated decreased sensitivity to ara-C, but neither p53 nor multiple p53-regulated genes were induced. Mature neurons showed increased ara-C resistance. These results demonstrate that molecular mechanisms underlying ara-C-induced death are similar to those responsible for trophic factor deprivation-induced apoptosis. However, substantial differences in neuronal death after these two distinct stress stimuli exist since ara-C toxicity, unlike the developmental death, can proceed in the absence of Bax.  相似文献   

19.
Larval zebrafish offers a good model to approach brain disease mechanisms, as structural abnormalities of their small brains can be correlated to quantifiable behavior. In this study, the structural alterations in one diencephalic dopaminergic nucleus induced by 1-methyl-4-phenylpyridinium (MPP+), a toxin inducing Parkinson's disease in humans, and those found in several neuronal groups after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pretoxin, were associated with decreased swimming speed. Detailed cell counts of dopaminergic groups indicated a transient decline of tyrosine hydroxylase expressing neurons up to about 50% after MPTP. The MPTP effect was partly sensitive to monoamine oxidase inhibitor deprenyl. Detailed analysis of the developing catecholaminergic cell groups suggests that the cell groups emerged at their final positions and no obvious significant migration from the original positions was seen. One 5-HT neuron group was also affected by MPTP treatment, whereas other groups remained intact, suggesting that the effect is selective. New nomenclature for developing catecholaminergic cell groups corresponding to adult groups is introduced. The diencephalic cell population consisting of groups 5,6 and 11 was sensitive to both MPTP and MPP+ and in this respect resembles mammalian substantia nigra. The results suggest that MPTP and MPP+ induce a transient functional deficit and motility disorder in larval zebrafish.  相似文献   

20.
The sensitivity of the zebrafish embryo test, a test proposed for routine waste water control, was compared with the acute fish toxicity test, in the determination of six types of waste water and ten different chemicals. The waste water was sampled from the following industrial processes: paper and cardboard production, hide tanning, metal galvanisation, carcass treatment and utilisation, and sewage treatment. The chemicals tested were: dimethylacetamide, dimethylsulphoxide, cadmium chloride, cyclohexane, hydroquinone, mercuric chloride, nickel chloride, nonylphenol, resmethrin and sodium nitrite. For many of the test substances, the zebrafish embryo test and the acute fish toxicity test results showed high correlations. However, there were certain environmentally-relevant substances for which the results of the zebrafish embryo test and the acute fish toxicity test differed significantly, up to 10,000-fold (Hg(2+) > 150-fold difference; NO(2)(-) > 300-fold; Cd(2+) > 200-fold; resmethrin > 10,000-fold). For the investigated waste water samples and chemicals, the survival rate of the zebrafish embryos showed high variations between different egg samples, within the range of the EC50 concentration. Subsequently, 5-6 parallel assays were deemed to be the appropriate number necessary for the precise evaluation of the toxicity of the test substances. Also, it was found that the sensitivities of different ontogenetic stages to chemical exposure differed greatly. During the first 12 hours after fertilisation (4-cell stage to the 5-somite stage), the embryos reacted most sensitively to test substance exposure, whereas the later ontogenetic stages showed only slight or no response, indicating that the test is most sensitive during the first 24 hours post-fertilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号