首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second messenger cAMP is a modulator of cellular growth possessing both inhibitory and stimulatory properties. In this report, we show that IL-2- and IL-4-dependent DNA synthesis of anti-mu-activated human B cells is modulated in opposite ways by agents increasing intracellular levels of cAMP. Forskolin and 2'-O-dibutyriladenosine-3',5'-cyclic monophosphate had no proliferative effect by themselves. Nevertheless they decreased IL-2-driven proliferation and increased IL-4-mediated DNA synthesis. IL-4 and cAMP each inhibited the IL-2-dependent proliferation with similar patterns of reactivity. Both IL-4 and forskolin needed to be present during the first 48 h of culture to display inhibitory activity, and preactivation of B cells for 16 h with forskolin and IL-4 did not prevent further B cell response to IL-2. This suggests that cAMP and IL-4 directly interact with IL-2 signaling. In addition, we show that the cAMP-dependent protein kinase inhibitor N-(2-methylamino-ethyl)-5-iso-quinoline-sulfamide reversed the IL-4-inhibitory effect on IL-2-driven proliferation. Our data suggest that the IL-4-inhibitory signal to IL-2-driven human B cell proliferation involves cAMP-dependent protein kinase activation.  相似文献   

2.
The proliferative activity of thymocytes cultured with IL-2 and submitogenic concentrations of PHA is increased by 3- to 10-fold in the presence of IL-4. In contrast, IL-4 alone is unable to induce proliferative activity in thymocyte cultures and its synergistic activity is only apparent to concentrations of IL-2 above 1 U/ml. The costimulatory activity of IL-4 is abrogated by the monoclonal anti-IL-4 antibody 11B11. Furthermore, potentiation of the IL-2-mediated thymocyte proliferation is not seen with IL-1, IL-3, IFN-gamma, and granulocyte-macrophage CSF. Thymocytes are at least as responsive to IL-4 as B cells and the IL-4 costimulatory activity in fractionated thymocytes appears to be restricted mainly to the Lyt-2+/L3T4- population. In contrast, purified resting mature T cells do not respond to IL-4 plus IL-2, although they did proliferate in response to IL-4 in combination with PMA. These findings indicate that thymocytes and mature T cells are responsive to the costimulatory activity of IL-4 under quite different conditions, and that IL-4 may play an important role in thymocyte maturation in the thymus.  相似文献   

3.
Resting T cells are stimulated to synthesize DNA by IL-4 and phorbol myristate acetate (PMA). This response of T cells to IL-4 plus PMA is independent of the action of IL-2 as judged by 1) the lack of IL-2 in supernatants of stimulated cells, 2) the failure to detect IL-2 mRNA in stimulated cells by in situ hybridization, 3) the inability of anti-IL-2R antibody and of anti-IL-2 antibody to block responses to IL-4 plus PMA, and 4) the failure of cyclosporin A to block responses. T cells also respond to anti-CD3 antibodies and IL-4 in the presence of anti-IL-2R antibodies. IL-4 stimulation of growth of the long term T cell line HT-2 also appears to be independent of the action of IL-2. No IL-2 mRNA is found in IL-4-stimulated HT-2 cells by Northern blotting; the response of HT-2 cells to IL-4 is not blocked by anti-IL-2R antibodies; the response of HT-2 cells to IL-4 is not inhibited by cyclosporin A. Although IL-4 stimulation of T cells is independent of IL-2, IL-4 plus PMA treatment of resting T cells does cause enhanced expression of IL-2R and prepares cells to proliferate to IL-2 alone. In both these properties IL-4 resembles IL-2. These experiments lead us to conclude that IL-4 can act as an alternative to IL-2 as authentic T cell growth factor.  相似文献   

4.
A set of alloreactive IL-2-dependent human CD4+ 45RA-w29+56- Th cell clones was divided into two groups according to their ability to respond to IL-4 by proliferation and their susceptibility to inhibition by TNF-alpha. The latter cytokine blocked proliferative responses to IL-2 of IL-4-nonresponsive clones, but did not affect proliferation of IL-4-responsive clones. In the present communication, it is demonstrated that exposure of apparently non-cytotoxic Th cells to IL-4 resulted in the dose-dependent induction of allospecific CTX in clones previously shown to be capable of responding to IL-4 by proliferation. In contrast, IL-2 induced both allospecific and MHC-unrestricted "NK-like" CTX in both IL-4 responder and nonresponder TCC. However, coculture with IL-4 in addition to IL-2 down-regulated this induction of NK-like CTX by the IL-2 (in those clones capable of responding to IL-4). Acquisition of these two types of CTX by the same TCC was additionally modulated by TNF-alpha, which also blocked the induction of NK-like CTX but had no effect on the induction of allospecific CTX by either IL-2 or IL-4. In contrast, IFN-gamma was unable to block induction of either type of CTX in this model system. These data suggest that even at the clonal level, the relative availability of a number of different up- and down-regulatory cytokines influences the outcome of an immune response. In the present model, IL-2 up-regulates specific and NK-like CTX, the latter component of which is down-regulated by TNF-alpha or IL-4, whereas IL-4 itself can up-regulate specific but not NK-like CTX.  相似文献   

5.
6.
7.
IL-4 regulates differentiation and proliferation of human precursor B cells   总被引:6,自引:0,他引:6  
The mechanism by which precursor and pre-B cells undergo differentiation is unclear; however, it is known that growth factors play an important role in this maturation process. The lymphokine, IL-4 has been shown to increase expression of class II Ag on B cells and induce B cell proliferation. In the murine system, IL-4 induced differentiation of precursor B cells into pre-B cells. In order to analyze growth factors on B cell development we have established an in vitro culture system for human bone marrow cells. We found that in the presence of IL-4, normal human precursor and pre-B cells can be induced to differentiate in the absence of cell proliferation with four days of culture. Furthermore, IL-4 depressed proliferation induced by supernatant from a T cell line. The differentiation was measured by an increase in both the number of cytoplasmic mu and surface IgM-positive cells. The effect of IL-4 on precursor and pre-B cell differentiation was detected as soon as 14 h of exposure to the lymphokine in the absence of an adherent feeder layer. These data suggest that IL-4 directly affects the differentiation process of normal human precursor and pre-B cells, and may antagonistically affect cell proliferation.  相似文献   

8.
A bioassay was developed using human small B cells adherent to anti-human IgM (anti-mu)-coated wells. These B cells were stimulated to proliferate by culture supernatants of concanavalin A (Con A)-activated human peripheral blood lymphocytes (Con A Sup) even in the presence of high concentrations of anti-mu coated on assay wells. Human B-cell growth factor (BCGF) activities were partially purified from Con A Sup. Preparative chromatography (Sephacryl S-200 and isoelectrofocusing) yielded a major peak of BCGF activity for B cells adherent to anti-mu-coated wells with a molecular weight of 50,000 (50 kDa) and a pI 7.6. The 50-kDa BCGF was further purified by sequential chromatography using DEAE-Sephacel, CM-Sepharose, Sephacryl S-200, CM-high performance liquid chromatography (HPLC), and hydroxyapatite (HA)-HPLC. The HA-HPLC-purified 50-kDa BCGF was free of interleukin-1 (IL-1), interleukin-2 (IL-2), and interferon activities, but could support growth of BCL1 cells, similar to BCGF-II. Neither IL-1 nor interferon-gamma had any growth-stimulating effect in our B-cell proliferation assay with or without BCGF in Iscove's synthetic assay medium. BCGF-induced proliferation of B cells adherent to anti-mu-coated wells could be markedly augmented by the simultaneous or sequential addition of recombinant human IL-2 (rIL-2). When cultured for 3 days with 50-kDa BCGF, about 40% of B cells adherent to anti-mu-coated wells expressed Tac antigen, and monoclonal anti-Tac antibody inhibited rIL-2 enhancement of proliferation of 50-kDa BCGF-preactivated B cells. In addition, 50-kDa BCGF could induce Tac antigen on an Epstein-Barr virus-transformed B-cell line (ORSON) in the presence of a suboptimal dose of phorbol myristate acetate (PMA) and also on a natural killer-like cell line (YT cells). We have therefore identified a major 50-kDa BCGF activity with Tac antigen-inducing activity that also has a synergistic effect with IL-2 on normal B-cell proliferation.  相似文献   

9.
Supernatants from activated human T cell clones were previously shown to contain B cell-activating factor (BCAF), an activity which results in polyclonal resting B cell stimulation. In the present study, we investigate the relationship between this activity and human interleukin-4 which was also shown to act on resting B cells. The supernatant of the T cell clone TT9 contains IL-4 but anti-IL-4 antiserum does not affect the response of B cells as measured by thymidine uptake or cell volume increase. Furthermore, IL-4 induces Fc epsilon-receptor (CD23) expression on 30% of unstimulated human B cells, whereas BCAF-containing supernatants from clone P2, that do not contain detectable amounts of IL-4, promote B cell proliferation without inducing CD23 expression. Our results therefore establish that IL-4 and BCAF are distinct activities and suggest that they trigger different activation pathways in human B cells. In addition, culture of B cells with T cell supernatants for 72 hr induces a three- to fourfold increase in the expression of HLA-DR, -DP, and -DQ antigens in 50% of B cells. The addition of inhibiting concentrations of anti-IFN-gamma, LT, or IL-4 antisera to the cultures does not change these results. Finally, 30% of B cells cultured with T cell supernatants leave the G1 phase of the cell cycle and 20% reach mitosis. Taken together, our findings further support the existence of a B cell-activating factor responsible for the activation of resting human B cells.  相似文献   

10.
11.
A variety of cytokines have been detected in inflamed intestinal mucosal tissues, including the pro-inflammatory cytokine, interleukin-1 (IL-1), along with growth factors involved in wound healing processes such as proliferation and cell migration. However, little is known about how IL-1 and growth factors interact with intestinal epithelial cells to regulate the production of inflammatory cytokines such as interleukin-8 (IL-8). Previously, we have shown that hepatocyte growth factor (HGF) could significantly enhance IL-1-stimulated IL-8 secretion by the Caco-2 colonic epithelial cell line, yet HGF, by itself, did not stimulate IL-8 secretion. In this report, a second growth factor, keratinocyte growth factor (KGF), was also found to significantly enhance IL-1-induced IL-8 secretion by Caco-2 cells, yet KGF, by itself, also had no effect. Simultaneous addition of both IL-1 and KGF was also required for the enhancing effect. Treatment of the Caco-2 cells with wortmannin or triciribine suppressed the enhancing effect of HGF, suggesting that the effect was mediated by signaling through phosphatidylinositol-3-kinase (PI3K) and the kinase AKT. The enhancing effect of KGF was not affected by wortmannin, but was suppressed by triciribine, suggesting that the effect of KGF was through a PI3K-independent activation of AKT. These results suggest that the growth factors HGF and KGF may play a role in enhancing IL-1-stimulated production of IL-8 by epithelial cells during mucosal inflammations. However, the mechanism by which the growth factors enhance the IL-1 response may be through different initial signaling pathways.  相似文献   

12.
Purification of human B cell growth factor   总被引:14,自引:0,他引:14  
Human B cell growth factor (BCGF, 12,000 to 14,000 daltons) has been purified from lectin-stimulated, peripheral blood mononuclear cell-conditioned medium. The purification procedure involves a series of column chromatographic steps incorporating ion exchange, affinity binding, and gel filtration. This procedure is centered around a relatively high yield single chromatographic step, for the removal of co-eluting cytokines from BCGF, that is based on differential binding characteristics to the weak ion-exchange matrix, hydroxylapatite. Reverse-phase high-pressure liquid chromatographic separation on a C18-Bondapak column effectively separates the BCGF and TCGF moieties, yet is characterized by poor yields. High-pressure liquid chromatographic procedures on anion exchange and size exclusion provided the final purification step for BCGF, at an analytical level, resulting in a single band with a m.w. of 12,000 on a SDS-polyacrylamide gel.  相似文献   

13.
To investigate the capacity of human IL-4 to function as a B cell growth factor (BCGF), we studied its ability to promote proliferation of a selected B cell line. We show that the cell line, designated A4, proliferated in response to IL-4 in a dose-dependent manner. The A4 cells also proliferated in response to their own B cell derived growth factor (B. BCGF), suggesting autocrine-mediated growth. The ability of IL-4 to induce proliferation of the A4 cell line was dependent on the level of autocrine growth. At low cell density, IL-4 induced marked dose-dependent proliferation. However, as A4 cell density increased, the ability of IL-4 to induce proliferation was diminished. The possibility that IL-4 may be mediating the autocrine growth of A4 cells was ruled out, because A4 cell-derived BCGF failed to induce CD23/low affinity receptors for the Fc region of IgE on activated tonsillar B cells and anti-IL-4 antibody did not block B. BCGF activity. We found that IL-4 stimulation of A4 cells and activated tonsillar B cells is associated with enhanced production of B. BCGF. These data indicate that human IL-4 has the capacity to promote proliferation of the B cell line A4, and that the ability of IL-4 to function as BCGF is associated with enhanced autocrine growth of activated B cells.  相似文献   

14.
Recent studies have shown that IL-4 can affect lymphocyte responses to IL-2. To evaluate the effects of IL-4 on T cell responses to physiologically relevant stimuli, we studied normal human T cells cultured with a low concentration of anti-CD3 mAb and IL-2 in the presence and absence of added IL-4. The addition of IL-4 to cultures of T cells stimulated with anti-CD3 mAb and IL-2 reduced the proliferative response by 49 to 59%. The inhibitory effect was observed in 3-, 5-, and 7-day cultures. Inhibition was dose-dependent with maximal inhibition at concentrations greater than or equal to 5 to 10 U/ml IL-4. IL-4-mediated inhibition occurred early during the T cell response, inasmuch as addition of IL-4 after stimulation for 24 h did not result in significant inhibition. Phenotypic analyses of cells cultured in the presence of anti-CD3 mAb, IL-2, and IL-4 suggested that the mechanism of regulation by IL-4 involves the inhibition of IL-2R expression. The proportion of both CD4+ and CD8+ cells that expressed IL-2R in response to IL-2 was diminished in the presence of IL-4, although HLA-DR levels were unaffected. Soluble IL-2R was also reduced in supernatants of cultures stimulated with anti-CD3 mAb, IL-2, and IL-4 as compared to cultures stimulated with anti-CD3 mAb and IL-2. These findings indicate that when normal human T cells are stimulated in vitro in a manner that approximates a physiologic interaction with Ag in vivo, rIL-4 provides a potent inhibitory signal to IL-2 responsive cells that is likely mediated by IL-4-induced inhibition of IL-2R expression.  相似文献   

15.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

16.
Recently we described the establishment in culture and the immunophenotypic and functional characteristics of a human T-leukemia line TALL-103/2 derived from the T-cell receptor (TCR)-gamma/delta subset of T-lymphocytes. TALL-103/2 cells are absolutely dependent on interleukin 2 (IL-2) for their growth and survival in culture and thus provide a model cell line for studies of IL-2 signal transduction in a TCR-gamma/delta T-cell. In this report, we focus on the regulation of SRC-family protein tyrosine kinases (PTKs) by IL-2. TALL-103/2 cells were found to contain p56-LCK, p59-FYN, p62-YES and p53/56-LYN. Stimulation of growth factor-deprived TALL-103/2 cells with IL-2, however, induced increases in the relative activity only of the p56-LCK kinase. This IL-2-mediated increase in LCK kinase activity was manifested both by increased kinase autophosphorylation and by increased phosphorylation of the exogenous substrate enolase during in vitro kinase assays. Furthermore, immunoblot assays determined that the levels of p56-LCK protein were unaltered by IL-2-treatment, indicating that the measured elevations in LCK kinase activity reflected an increase in the specific activity of this PTK. In TALL-103/2 cells, IL-2 stimulated concentration-dependent increases in p56-LCK activity that displayed rapid and transient kinetics: detectable increases occurred within 1 minute after IL-2 stimulation, peaked at 10 minutes, and declined to baseline levels by 30 minutes. Treatment of TALL-103/2 cells with IL-4 abrogated IL-2-initiated proliferation, but did not inhibit IL-2-mediated activation of p56-LCK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In this report we show that IL-4 inhibits DNA synthesis induced by stimulation of human B cells with mitogenic doses of either soluble anti-mu mAb DA44 or phorbol ester. In contrast, earlier steps of anti-mu-induced B cell stimulation, such as RNA synthesis, CD23 expression and IL-6 production, were not inhibited but rather increased in the presence of IL-4. From these results, IL-4 appears therefore to exert two opposite effects on DA44 anti-mu mAb-induced human B cell activation: early steps are stimulated, and later steps inhibited. The results of kinetic analysis were consistent with this model. The inhibitory activity of IL-4 required an active cAMP-dependent pathway since IL-4-mediated inhibition of anti-mu-induced B cell proliferation was abolished in the presence of two specific inhibitors of the cAMP pathway (H8 and 2',5'-dideoxyadenosine which are specific for cAMP-dependent protein kinase and adenylate cyclase respectively). Furthermore, IL-4 induced a delayed and prolonged increase in intracellular cAMP concentrations (observed between 4 and 48 hours of culture), and this strongly suggests that the late inhibitory effects of IL-4 is cAMP-dependent. Moreover, this delayed IL-4-mediated cAMP production is probably sufficient to prevent anti-mu induced DNA synthesis since addition of the cAMP agonist forskolin on day 1 or 2 of culture also suppresses the anti-mu-mediated B cell proliferation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Immunoreceptor tyrosine-based inhibitory motifs (ITIM) have been implicated in the negative modulation of immunoreceptor signaling pathways. The IL-4R alpha-chain (IL-4Ralpha) contains a putative ITIM in the carboxyl terminal. To determine the role of ITIM in the IL-4 signaling pathway, we ablated the ITIM of IL-4Ralpha by deletion and site-directed mutagenesis and stably expressed the wild-type (WT) and mutant hIL-4Ralpha in 32D/insulin receptor substrate-2 (IRS-2) cells. Strikingly, 32D/IRS-2 cells expressing mutant human (h)IL-4Ralpha were hyperproliferative in response to IL-4 compared with cells expressing WT hIL-4Ralpha. Enhanced tyrosine phosphorylation of Stat6, but not IRS-2, induced by hIL-4 was observed in cells expressing mutant Y713F. Using peptides corresponding to the ITIM of hIL-4Ralpha, we demonstrate that tyrosine-phosphorylated peptides, but not their nonphosphorylated counterparts, coprecipitate SH2-containing tyrosine phosphatase-1, SH2-containing tyrosine phosphatase-2, and SH2-containing inositol 5'-phosphatase. The in vivo association of SH2-containing inositol 5'-phosphatase with IL-4Ralpha was verified by coimmunoprecipitation with anti-IL-4Ralpha Abs. These results demonstrate a functional role for ITIM in the regulation of IL-4-induced proliferation.  相似文献   

19.
T cells stimulate B cells to divide and differentiate by providing activating signals in the form of inducible membrane-bound molecules and secreted cytokines. Provision of these signals in vitro reproduces many of the consequences of T-B collaboration in the absence of any form of Ag stimulation. Although clearly not obligatory, Ag signals appear to play an important regulatory role in numerous aspects of the B cell response. To examine directly the effect of an Ag signal, naive B cells were stimulated in the presence of rCD40 ligand, with or without IL-4 in the presence or absence of different anti-Ig mAbs. Anti-Ig mAbs exerted variable effects on the B cell division rate, from enhancement to no effect to inhibition. In contrast, all anti-Ig mAbs tested inhibited division-linked isotype switching to IgG1 and IgE. Thus, B cell Ag receptor ligands could modify the rates of B cell expansion and class switching independently. The ability of anti-Ig reagents to modify class switching suggests the B cell Ag receptor may play an important role in the selection of Ig isotypes during T cell-dependent humoral immune responses to Ags of different physical structure.  相似文献   

20.
The limitation of proliferative potential in human somatic cells imposed by replicative senescence has been proposed as a mechanism of tumor suppression. The E3 ubiquitin ligase Smurf2 is up-regulated during replicative senescence in response to telomere shortening, and induces senescence when expressed adventitiously in early passage or telomerase-immortalized human fibroblasts. To investigate the generality of Smurf2's control of cell proliferation, we have studied the effects of Smurf2 up-regulation on cell proliferation in early passage human mammary epithelial cells which normally do not show elevated expression of Smurf2 during senescence, and in 16 human cancer cell lines derived from both sarcomas and carcinomas. Here we report that Smurf2 up-regulation induced senescence in a wide variety of human cell types, including highly neoplastic cell lines. Consistent with our previous findings, the ability of Smurf2 to arrest cell proliferation did not require its ubiquitin ligase activity. Furthermore, expression of the cyclin-dependent kinase inhibitor p21 was increased in tumor cells undergoing Smurf2-induced senescence, and such increase occurred independently of the transactivation function of p53. Our results, which reveal a previously unsuspected tumor suppression function for Smurf2-induced senescence, suggest that modulation of Smurf2 action may be a useful strategy for inhibition of cancer cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号