首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this report, gold or silver deposited on layered manganese oxide has been synthesized by a simple method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectrometry, atomic absorption spectroscopy, and energy-dispersive X-ray mapping. The gold deposited on layered manganese oxide showed efficient catalytic activity toward water oxidation in the presence of cerium(IV) ammonium nitrate. The properties associated with this compound suggest it is a functional model for the water-oxidizing complex in photosystem II.  相似文献   

2.
The water-oxidizing complex of Photosystem II is an important target of ultraviolet-B (280-320 nm) radiation, but the mechanistic background of the UV-B induced damage is not well understood. Here we studied the UV-B sensitivity of Photosystem II in different oxidation states, called S-states of the water-oxidizing complex. Photosystem II centers of isolated spinach thylakoids were synchronized to different distributions of the S(0), S(1), S(2) and S(3) states by using packages of visible light flashes and were exposed to UV-B flashes from an excimer laser (lambda=308 nm). The loss of oxygen evolving activity showed that the extent of UV-B damage is S-state-dependent. Analysis of the data obtained from different synchronizing flash protocols indicated that the UV-sensitivity of Photosystem II is significantly higher in the S(3) and S(2) states than in the S(1) and S(0) states. The data are discussed in terms of a model where UV-B-induced inhibition of water oxidation is caused either by direct absorption within the catalytic manganese cluster or by damaging intermediates of the water oxidation process.  相似文献   

3.
András Szilárd 《BBA》2007,1767(6):876-882
The water-oxidizing complex of Photosystem II is an important target of ultraviolet-B (280-320 nm) radiation, but the mechanistic background of the UV-B induced damage is not well understood. Here we studied the UV-B sensitivity of Photosystem II in different oxidation states, called S-states of the water-oxidizing complex. Photosystem II centers of isolated spinach thylakoids were synchronized to different distributions of the S0, S1, S2 and S3 states by using packages of visible light flashes and were exposed to UV-B flashes from an excimer laser (λ = 308 nm). The loss of oxygen evolving activity showed that the extent of UV-B damage is S-state-dependent. Analysis of the data obtained from different synchronizing flash protocols indicated that the UV-sensitivity of Photosystem II is significantly higher in the S3 and S2 states than in the S1 and S0 states. The data are discussed in terms of a model where UV-B-induced inhibition of water oxidation is caused either by direct absorption within the catalytic manganese cluster or by damaging intermediates of the water oxidation process.  相似文献   

4.
Photosystem II (PSII) is a pigment-protein complex of thylakoid membrane of higher plants, algae, and cyanobacteria where light energy is used for oxidation of water and reduction of plastoquinone. Light-dependent reactions (generation of excited states of pigments, electron transfer, water oxidation) taking place in PSII can lead to the formation of reactive oxygen species. In this review attention is focused on the problem of interaction of molecular oxygen with the donor site of PSII, where after the removal of manganese from the water-oxidizing complex illumination induces formation of long-lived states (P680 and TyrZ·) capable of oxidizing surrounding organic molecules to form radicals.  相似文献   

5.
Nature uses a Mn oxide-based catalyst for water oxidation in plants, algae, and cyanobacteria. Mn oxides are among major candidates to be used as water-oxidizing catalysts. Herein, we used two straightforward and promising methods to form Escherichia coli bacteria/Mn oxide compounds. In one of the methods, the bacteria template was intact after the reaction. The catalysts were characterized by X-ray photoelectron spectroscopy, visible spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, Raman spectroscopy, and X-ray diffraction spectrometry. Electrochemical properties of the catalysts were studied, and attributed redox potentials were assigned. The water oxidation of the compounds was examined under electrochemical condition. Linear sweep voltammetry showed that the onsets of water oxidation in our experimental condition for bacteria and Escherichia coli bacteria/Mn oxide were 1.68 and 1.56 V versus the normal hydrogen electrode (NHE), respectively. Thus, the presence of Mn oxide in the catalyst significantly decreased (~?120 mV) the overpotential needed for water oxidation.  相似文献   

6.
This review focuses on our recent efforts in synthetic ruthenium–tyrosine–manganese chemistry mimicking the donor side reactions of Photosystem II. Tyrosine and tryptophan residues were linked to ruthenium photosensitizers, which resulted in model complexes for proton-coupled electron transfer from amino acids. A new mechanistic model was proposed and used to design complexes in which the mechanism could be switched between concerted and step-wise proton-coupled electron transfer. Moreover, a manganese dimer linked to a ruthenium complex could be oxidized in three successive steps, from Mn2II,II to Mn2III,IV by the photo-oxidized ruthenium sensitizer. This was possible thanks to a charge compensating ligand exchange in the manganese complex. Detailed studies of the ligand exchange suggested that at high water concentrations, each oxidation step is coupled to a proton-release of water-derived ligands, analogous to the oxidation steps of the manganese cluster of Photosystem II.  相似文献   

7.
光合作用氧释放机理研究进展   总被引:4,自引:0,他引:4  
植物在光合作用过程中不仅为同化CO2提供能量和还原力,同时裂解水放出氧气。放氧反应主要由光系统Ⅱ(PSⅡ)氧化侧的4个锰原子组成的锰簇催化完成的。因此,锰簇在光合放氧过程中起看至关重要的作用。文章概述了对锰簇及其微环境的结构和功能的研究进展。  相似文献   

8.
In order to model the individual electron transfer steps from the manganese cluster to the photooxidized sensitizer P680+ in Photosystem II (PS II) in green plants, the supramolecular complex 4 has been synthesized. In this complex, a ruthenium(II) tris-bipyridine type photosensitizer has been linked to a manganese(II) dimer via a substituted L-tyrosine, which bridges the manganese ions. The trinuclear complex 4 was characterized by electron paramagnetic resonance (EPR) and electrospray ionization mass spectrometry (ESI-MS). The excited state lifetime of the ruthenium tris-bipyridine moiety in 4 was found to be about 110 ns in acetonitrile. Using flash photolysis in the presence of an electron acceptor (methylviologen), it was demonstrated that in the supramolecular complex 4 an electron was transferred from the excited state of the ruthenium tris-bipyridine moiety to methylviologen, forming a methylviologen radical and a ruthenium(III) tris-bipyridine moiety. Next, the Ru(III) species retrieved the electron from the manganese(II/II) dimer in an intramolecular electron transfer reaction with a rate constant kET > 1.0 x 10(7) s(-1), generating a manganese(II/III) oxidation state and regenerating the ruthenium(II) photosensitizer. This is the first example of intramolecular electron transfer in a supramolecular complex, in which a manganese dimer is covalently linked to a photosensitizer via a tyrosine unit, in a process which mimics the electron transfer on the donor side of PS II.  相似文献   

9.
The Ala344 residue of the D1 protein has been identified as a crucial residue of the catalytic cluster of the water-oxidizing complex, however, its function has not been fully clarified. Here we have used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-Ala344stop mutation on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutant cannot grow photoautotrophically it shows flash-induced thermoluminescence and chlorophyll fluorescence signals reflecting the stabilization of negative and positive charges on the Q(A) and Q(B) quinone electron acceptors, and stable Photosystem II donors, respectively. Decay of flash induced chlorophyll fluorescence yield is multiphasic in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with 6 ms, 350 ms, and 26 s time constants. When cells are illuminated with repetitive flashes, fired at 1 ms intervals, the 6 ms phase is gradually decreased with the concomitant increase of the 350 ms phase. After 45 min dark adaptation of mutant cells the 6 ms and 350 ms phases were significantly decreased and a very slow decaying component was formed. Flash induced oscillation of the thermoluminescence B band, which reflects the redox cycling of the water-oxidizing complex in the wild-type cells, was completely abolished in the D1-Ala344stop mutant. The results demonstrate that low efficiency photooxidation of Mn occurs in about 60% of the PSII centers. The photooxidizable Mn is unstable in the dark, and formation of higher S states is inhibited. In addition, the Q(A) to Q(B) electron transfer step is slowed down as an indirect consequence of the donor side modification. Our data indicate that the stabilization of a Mn ion by the alpha-carboxylate chain of the D1-Ala344 residue might represent one of the final steps in the assembly of functional catalytic sites for water oxidation.  相似文献   

10.
Light induced damage of the photosynthetic apparatus is an important and highly complex phenomenon, which affects primarily the Photosystem II complex. Here the author summarizes the current state of understanding of the molecular mechanisms, which are involved in the light induced inactivation of Photosystem II electron transport together with the relevant mechanisms of photoprotection. Short wavelength ultraviolet radiation impairs primarily the Mn?Ca catalytic site of the water oxidizing complex with additional effects on the quinone electron acceptors and tyrosine donors of PSII. The main mechanism of photodamage by visible light appears to be mediated by acceptor side modifications, which develop under conditions of excess excitation in which the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation of excess excitation facilitates the reduction of intersystem electron carriers and Photosystem II acceptors, and thereby induces the formation of reactive oxygen species, especially singlet oxygen whose production is sensitized by triplet chlorophyll formation in the reaction center of Photosystem II. The highly reactive singlet oxygen and other reactive oxygen species, such as H?O? and O??, which can also be formed in Photosystem II initiate damage of electron transport components and protein structure. In parallel with the excess excitation dependent mechanism of photodamage inactivation of the Mn?Ca cluster by visible light may also occur, which impairs electron transfer through the Photosystem II complex and initiates further functional and structural damage of the reaction center via formation of highly oxidizing radicals, such as P 680(+) and Tyr-Z(+). However, the available data do not support the hypothesis that the Mn-dependent mechanism would be the exclusive or dominating pathway of photodamage in the visible spectral range. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

11.
The structure of photosystem I at 3.8 A resolution illustrated the main structural elements of the water-oxidizing photosystem II complex, including the constituents of the electron transport chain. The location of the Mn cluster within the complex has been identified for the first time to our knowledge. At this resolution, no individual atoms are visible, however, the electron density of the Mn cluster can be used to discuss both the present models of the Mn cluster as revealed from various spectroscopic methods and the implications for the mechanisms of water oxidation. Twenty-six chlorophylls from the antenna system of photosystem II have been identified. They are arranged in two layers, one close to the stromal side and one close to the lumenal side. Comparing the structure of the antenna system of photosystem II with the chlorophyll arrangement in photosystem I, which was recently determined at 2.5 A resolution shows that photosystem II lacks the central domain of the photosystem I antenna, which is discussed in respect of the repair cycle of photosystem II due to photoinhibition.  相似文献   

12.
Photosystem II (PS II) is a multisubunit membrane protein complex, which uses light energy to oxidize water and reduce plastoquinone. High-resolution electron cryomicroscopy and X-ray crystallography are revealing the structure of this important molecular machine. Both approaches have contributed to our understanding of the organization of the transmembrane helices of higher plant and cyanobacterial PS II and both indicate that PS II normally functions as a dimer. However the high-resolution electron density maps derived from X-ray crystallography currently at 3.7/3.8 A, have allowed assignments to be made to the redox active cofactors involved in the light-driven water-plastoquinone oxidoreductase activity and to the chlorophyll molecules that absorb and transfer energy to the reaction centre. In particular the X-ray work has identified density that can accommodate the four manganese atoms which catalyse the water-oxidation process. The Mn cluster is located at the lumenal surface of the DI protein and approximately 7 A from the redox active tyrosine residue (YZ) which acts an electron/proton transfer link to the primary oxidant P680.+. The lower resolution electron microscopy studies, however, are providing structural models of larger PS II supercomplexes that are ideal frameworks in which to incorporate the X-ray derived structures.  相似文献   

13.
Approximately 20 protein subunits are associated with the PS II complex, not counting subunits of peripheral light-harvesting antenna complexes. However, it is not yet established which proteins specifically are involved in the water-oxidation process. Much evidence supports the concept that the D1/D2 reaction center heterodimer not only plays a central role in the primary photochemistry of Photosystem II, but also is involved in electron donation to P680 and in ligation of the manganese cluster. This evidence includes (a) the primary donor to P680 has been shown to be a redox-active tyrosyl residue (Tyr161) in the D1 protein, and (b) site-directed mutagenesis and computer-assisted modeling of the reaction center heterodimer have suggested several sites with a possible function in manganese ligation. These include Asp170, Gln165 and Gln189 of the D1 protein and Glu69 of the D2 protein as well as the C-terminal portion of the mature D1 protein. Also, hydrophilic loops of the chlorophyll-binding protein CP43 that are exposed at the inner thylakoid surface could be essential for the water-splitting process.In photosynthetic eukaryotes, three lumenal extrinsic proteins, PS II-O (33 kDa), PS II-P (23 kDa) and PS II-Q (16 kDa), influence the properties of the manganese cluster without being involved in the actual catalysis of water oxidation. The extrinsic proteins together may have multiple binding sites to the integral portion of PS II, which could be provided by the D1/D2 heterodimer and CP47. A major role for the PS II-O protein is to stabilize the manganese cluster. Most experimental evidence favors a connection of the PS II-P protein with binding of the Cl- and Ca2+ ions required for the water oxidation, while the PS II-Q protein seems to be associated only with the Cl- requirement. The two latter proteins are not present in PS II of prokaryotic organisms, where their functions may be replaced by a 10–12 kDa subunit and a newly discovered low-potential cytochrome c-550.Abbreviations PS II Photosystem II - PCC Pasteur Culture Collection  相似文献   

14.
Freezing of spinach or barley chloroplasts during continuous illumination results in the trapping of a paramagnetic state or a mixture of such states characterized by a multiline EPR spectrum. Added Photosystem II electron acceptor enhances the signal intensity considerably. Treatments which abolish the ability of the chloroplasts to evolve oxygen, by extraction of the bound manganese, prevent the formation of the paramagnetic species. Restoration of Photosystem II electron transport in inhibited chloroplasts with an artificial electron donor (1,5-diphenylcarbazide) does not restore the multiline EPR spectrum. The presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) results in a modified signal which may represent a second paramagnetic state. The paramagnetic forms appear to originate on the donor side in Photosystem II and are dependent on a functional oxygenevolving site and bound, intact manganese. It is suggested that magnetically interacting manganese ions in the oxygen-evolving site may be responsible for the EPR signals. This suggestion is supported by calculations.  相似文献   

15.
The reaction center Photosystem II is a key component of the most successful solar energy converting machinery on earth: the oxygenic photosynthesis. Photosystem II uses light to drive the reduction of plastoquinone and the oxidation of water. Water-oxidation is catalyzed by a manganese cluster and gives the organism an abundant source of electrons. The principles of photosynthesis have inspired chemists to mimic these reactions in artificial molecular assemblies. Synthetic light-harvesting antennae and light-induced charge separation systems have been demonstrated by several groups. More recently, there has been an increasing effort to mimic Photosystem II by coupling light-driven charge separation to water oxidation, catalyzed by synthetic manganese complexes.  相似文献   

16.
We show for the first time that Cah3, a carbonic anhydrase associated with the photosystem II (PSII) donor side in Chlamydomonas reinhardtii, regulates the water oxidation reaction. The mutant cia3, lacking Cah3 activity, has an impaired water splitting capacity, as shown for intact cells, thylakoids and PSII particles. To compensate this impairment, the mutant overproduces PSII reaction centres (1.6 times more than wild type). We present compelling evidence that the mutant has an average of two manganese atoms per PSII reaction centre. When bicarbonate is added to mutant thylakoids or PSII particles, the O2 evolution rates exceed those of the wild type by up to 50%. The donor side of PSII in the mutant also exhibits a much higher sensitivity to overexcitation than that of the wild type. We therefore conclude that Cah3 activity is necessary to stabilize the manganese cluster and maintain the water-oxidizing complex in a functionally active state. The possibility that two manganese atoms are enough for water oxidation if bicarbonate ions are available is discussed.  相似文献   

17.
1. CO2-depletion of thylakoid membranes results in a decrease of binding affinity of the Photosystem II (PS II) inhibitor atrazine. The inhibitory efficiency of atrazine, expressed as I50-concentration (50% inhibition) of 2,6-dichlorophenolindophenol reduction, is the same in CO2-depleted as well as in control thylakoids. This shows that CO2-depletion results in a complete inactivation of a part of the total number of electron transport chains. 2. A major site of action of CO2, which had previously been located between the two electron acceptor quinone molecule B (or R) and Photosystem II inhibitor atrazine as suggested by the following observations: (a) CO2-depletion results in a shift of the binding constant (kappa b) of [14C]atrazine to thylakoid membranes indicating a decreased affinity of atrazine to membrane; (b) trypsin treatment, which is known to modify the Photosystem II complex at the level of B, strongly diminishes CO2 stimulation of electron transport reactions in CO2-depleted membranes; and (c) thylakoids from atrazine-resistant plants, which contain a Photosystem II complex modified at the inhibitor binding site, show an altered CO2-stimulation of electron flow. 3. CO2-depletion does not produce structural changes in enzyme complexes involved in Photosystem II function of thylakoid membranes, as shown by freeze-fracture studies using electron microscopy.  相似文献   

18.
The EPR characteristics of oxygen evolving particles prepared from Phormidium laminosum are described. These particles are enriched in Photosystem II allowing EPR investigation of signals which were previously small or masked by those from Photosystem I in other preparations. EPR signals from a Signal II species and high potential cytochrome beta-559 appear as they are photooxidised at cryogenic temperatures by Photosystem II. The Signal II species is a donor close to the Photosystem II reaction centre and may represent part of the charge accumulation system of water oxidation. An EPR signal from an iron-sulphur centre which may represent an unidentified component of photosynthetic electron transport is also described. The properties of the oxygen evolving particles show that the preparation is superior to chloroplasts or unfractionated alga membranes for the study of Photosystem II with a functional water oxidation system.  相似文献   

19.
Selective extraction-reconstitution experiments with the extrinsic Photosystem II polypeptides (33 kDa, 23 kDa and 17 kDa) have demonstrated that the manganese complex and the 33 kDa polypeptide are both necessary structural elements for the tight binding of the water soluble 17 and 23 kDa species. When the manganese complex is intact the 33 kDa protein interacts strongly with the rest of the photosynthetic complex. Destruction of the Mn-complex has two dramatic effects: i) The binding of the 33 kDa polypeptide is weaker, since it can be removed by exposure of the PS II system to 2 M NaCl, and ii) the 17 and 23 kDa species do not rebind to Mn-depleted Photosystem II membranes that retain the 33 kDa protein.Abbreviations Chl chlorophyll - HQ hydroquinone - MES 2(N-morpholino)ethanesulfonic acid - PS II Photosystem II - Tris 2-amino-2-hydroxymethylpropane-1,3-diol  相似文献   

20.
Proteoliposomes containing oxygen-evolving particles of Photosystem II and associated with a planar phospholipid membrane generate a transmembrane electric potential difference (DeltaPsi) induced by a laser flash. With direct electrometrical technique, it was shown that the direction of the electrical field ("minus" inside the proteoliposome) corresponds to acceptor side of the Photosystem II complex facing inside and donor side facing outside of the liposomes. In addition to the fast phase (tau < 0.1 microsec) of the DeltaPsi generation due to electron transfer between YZ of the water-oxidizing complex and the primary plastoquinone QA, a phase with tau approximately 120 microsec and maximum amplitude approximately 30% of the amplitude of the fast phase was observed under the first flash in proteoliposomes containing potassium ferricyanide, which is known as an oxidant of the non-heme iron (Fenh) on the acceptor side of Photosystem II. This additional phase was absent under the second laser flash but was completely restored after 5 min dark adaptation. The phase of the photoelectric response with tau approximately 120 microsec is probably due to electron transfer from QA to Fenh(III) and likely includes a component related to H+ transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号