首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

3.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

4.
Acclimation to rapidly fluctuating light, simulating shallow aquatic habitats, is altered depending on inorganic carbon (Ci) availability. Under steady light of 50 μmol photons·m?2·s?1, the growth rate of Synechococcus elongatus PCC7942 was similar in cells grown in high Ci (4 mM) and low Ci (0.02 mM), with induced carbon concentrating mechanisms compensating for low Ci. Growth under fluctuating light of a 1‐s period averaging 50 μmol photons·m?2·s?1 caused a drop in growth rate of 28%±6% in high Ci cells and 38%±8% in low Ci cells. In high Ci cells under fluctuating light, the PSI/PSII ratio increased, the PSII absorption cross‐section decreased, and the PSII turnover rate increased in a pattern similar to high‐light acclimation. In low Ci cells under fluctuating light, the PSI/PSII ratio decreased, the PSII absorption cross‐section decreased, and the PSII turnover remained slow. Electron transport rate was similar in high and low Ci cells but in both was lower under fluctuating than under steady light. After acclimation to a 1‐s period fluctuating light, electron transport rate decreased under steady or long‐period fluctuating light. We hypothesize that high Ci cells acclimated to exploit the bright phases of the fluctuating light, whereas low Ci cells enlarged their PSII pool to integrate the fluctuating light and dampen the variation of the electron flux into a rate‐restricted Ci pool. Light response curves measured under steady light, widely used to predict photosynthetic rates, do not properly predict photosynthetic rates achieved under fluctuating light, and exploitation of fluctuating light is altered by Ci status.  相似文献   

5.
In this study, we presented a new approach for quantification of bicarbonate (HCO3?) molecules bound to PSII. Our method, which is based on a combination of membrane-inlet mass spectrometry (MIMS) and 18O-labelling, excludes the possibility of “non-accounted” HCO3? by avoiding (1) the employment of formate for removal of HCO3? from PSII, and (2) the extremely low concentrations of HCO3?/CO2 during online MIMS measurements. By equilibration of PSII sample to ambient CO2 concentration of dissolved CO2/HCO3?, the method ensures that all physiological binding sites are saturated before analysis. With this approach, we determined that in spinach PSII membrane fragments 1.1 ± 0.1 HCO3? are bound per PSII reaction center, while none was bound to isolated PsbO protein. Our present results confirmed that PSII binds one HCO3? molecule as ligand to the non-heme iron of PSII, while unbound HCO3? optimizes the water-splitting reactions by acting as a mobile proton shuttle.  相似文献   

6.
Extraction of Ca2+ from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as “the decoupling effect” (Semin et al. Photosynth Res 98:235–249, 2008). Extraction of Cl? from Ca2+-depleted membranes (PSII[–Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 ·? , as possible products of water oxidation in PSII(–Ca) membranes was examined. During the investigation of O 2 ·? production in PSII(–Ca) samples, we found that (i) O 2 ·? is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl? does not inhibit water oxidation, but (iii) Cl? depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl? under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 ·? generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl? anions are not involved in the oxidation of water to H2O2 in decoupled PSII(–Ca) membranes. These results also indicate that Cl? anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H+ ions into the lumenal space.  相似文献   

7.
The photosystem II electron acceptor 3,6-dichloro-2,5-dimethoxy-p-benzoquinone [DCDMQ] is suggested to replace the second quinone-type two electron acceptor B (or R); the DCDMQ Hill reaction is sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, but is insensitive to dry heptane extraction of thylakoids and other photosystem II inhibitors. Addition of HCO3? to CO2-depleted thylakoids in silicomolybdate, DCDMQ, diaminodurene and ferricyanide Hill reactions brought about 1,3,10 and 10 fold increase in the electron transport rates; these data confirm that HCO3? affects both Q? to B and B2? to PQ reactions.  相似文献   

8.
Bicarbonate depletion of chloroplast thylakoids reduces the affinity of the herbicide, ioxynil, to its binding site in Photosystem (PS) II. This herbicide is found to be a relatively more efficient inhibitor of the Hill reaction when HCO?3 is added to CO2-depleted thylakoids in subsaturating rather than in saturating concentrations. The reason for this dependence of the inhibitor efficiency on the HCO?3 concentration is that the inactive HCO?3-deficient PS II reaction chains bind less ioxynil than the active PS II electron-transport chains that have bound HCO?3, and, thus, after addition of a certain amount of ioxynil the concentration of the free herbicide increases when the HCO?3 concentration decreases. Therefore, the inhibition of electron transport by ioxynil increases at decreasing HCO?3 levels. Measurements on the effects of modification of lysine and arginine residues on the rate of electron transport are also presented: the rate of modification is faster in the presence than in the absence of HCO?3. Therefore, we suggest that surface-exposed lysine or arginine residues are not involved in binding of HCO?3 (or CO2 or CO2?3) to its binding protein, but that HCO?3 influences the conformation of its binding environment such that the affinity for certain herbicides and the accessibility for amino acid modifiers are changed.  相似文献   

9.
In high inorganic carbon grown (1% CO2 [volume/volume]) cells of the cyanobacterium Synechococcus PCC7942, the carbonic anhydrase (CA) inhibitor, ethoxyzolamide (EZ), was found to inhibit the rate of CO2 uptake and to reduce the final internal inorganic carbon (Ci) pool size reached. The relationship between CO2 fixation rate and internal Ci concentration in high Ci grown cells was little affected by EZ. This suggests that in intact cells internal CA activity was unaffected by EZ. High Ci grown cells readily took up CO2 but had little or no capacity for HCO3 uptake. These cells appear to possess a CO2 utilizing Ci pump that has a CA-like function associated with the transport step such that HCO3 is the species delivered to the cell interior. This CA-like step may be the site of inhibition by EZ. Low Ci grown cells possess both CO2 uptake and HCO3 uptake activities and EZ inhibited both activities to a similar degree, suggesting that a common step in CO2 and HCO3 uptake (such as the Ci pump) may have been affected. The inhibitor had no apparent effect on internal CO2/HCO3 equilibria (internal CA function) in low Ci grown cells.  相似文献   

10.
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25–0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20–50 mg m?2) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m?2. The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.  相似文献   

11.
Pulses of blue light cause stimulation of red light saturated photosynthesis in Ectocarpus siliculosus, because blue light activates the operation of a pathway for inorganic carbon (Ci) acquisition by inducing the mobilization of CO2 from an intermediate metabolite. In the absence of exogenous Ci, photosynthetic rates roughly equal those of CO2 release by respiration. In seawater of pH 9·5 (2·3 mol m–3 total Ci, but concentrations of free CO2 below 0·2 mmol m–3), photosynthesis was clearly above these rates, although they were only ≈ 30% of those in normal seawater (≈ pH 8). The degree and the time course of the stimulations of photosynthesis by pulses of blue light were unaltered at high pH. Essentially the same characteristics were found after buffering or in the presence of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity. Therefore, it is concluded that Ectocarpus is able to directly take up HCO3 in addition to CO2 (uptake of CO32– cannot be excluded). The dependence of photosynthesis on Ci at pH 9·5 was biphasic, with Ci below 0·2 mol m–3 having no effect at all. In Ci-free seawater, the shapes of the stimulations after blue light pulses differed for pH 6, pH 8 and pH 9·5. At low pH, only the fast peak (maximum ≈ 5 min after blue light) was detected, whereas at high pH mainly the slow peak (maximum ≈ 20 min after blue light) was observed. At the intermediate pH 8, both peaks were present. As inhibition of total carbonic anhydrase by ethoxyzolamide brought out the fast peak of the stimulations at pH 9·5 it is concluded that the fast component was due to a transient disequilibrium of an intracellular pool of Ci which, after blue light, was fed by CO2 released from the postulated storage intermediate.  相似文献   

12.
The capacity for HCO3 use by Porphyra leucosticta Thur. in Le Jolis grown at different concentrations of inorganic carbon (Ci) was investigated. The use of HCO3 at alkaline pH by P. leucosticta was␣demonstrated by comparing the O2 evolution rates measured with the O2 evolution rates theoretically supported by the CO2 spontaneously formed from HCO3 . Both external and internal carbonic anhydrase (CA; EC 4.2.1.1) were implied in HCO3 use during photosynthesis because O2 evolution rates and the increasing pH during photosynthesis were inhibited in the presence of azetazolamide and ethoxyzolamide (inhibitors for external and total CA respectively). Both external and internal CA were regulated by the Ci level at which the algae were grown. A high Ci level produced a reduction in total CA activity and a low Ci level produced an increase in total CA activity. In contrast, external CA was increased at low Ci although it was not affected at high Ci . Parallel to the reduction in total CA activity at high Ci is a reduction in the affinity for Ci, as estimated from photosynthesis versus Ci curves, was found. However, there was no evident relationship between external CA activity and the capacity for HCO3 use because the presence of external CA became redundant when P. leucosticta was cultivated at high Ci. Our results suggest that the system for HCO3 use in P. leucosticta is composed of different elements that can be activated or inactivated separately. Two complementary hypotheses are postulated: (i) internal CA is an absolute requirement for a functioning Ci-accumulation mechanism; (ii) there is a CO2 transporter that works in association with external CA. Received: 20 April 1996 / Accepted: 5 August 1996  相似文献   

13.
Ogawa T  Kaplan A 《Plant physiology》1987,83(4):888-891
The pH of the medium during CO2 uptake into the intracellular inorganic carbon (Ci) pool of a high CO2-requiring mutant (E1) and wild type of Anacystis nidulans R2 was measured. Experiments were performed under conditions where photosynthetic CO2 fixation is inhibited. There was an acidification of the medium during CO2 uptake in the light and an alkalization during CO2 efflux after darkening. A one to one stoichiometry existed between the amounts of H+ appearing in the medium and CO2 taken up into the intracellular Ci pool, regardless of the carbon species transported. The results indicate that (a) CO2 is taken up simultaneously with an efflux of equimolar H+, probably produced as a result of CO2 hydration during transport and (b) HCO3 produced by hydration of CO2 in the medium was transported into the cells without accompanying net flux of H+ or OH. The influx and efflux of Ci during Ci transport produced nonequilibrium between CO2 and HCO3 in the medium, with the concentration of HCO3 being higher than that expected under equilibrium conditions. The nonequilibrium was present even under the conditions where the influx of Ci is compensated by its efflux. The direction of this nonequilibrium suggested that efflux of HCO3 occurs during uptake of Ci.  相似文献   

14.
This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O2. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O2 evolution: Ca2+ and inorganic carbon. In this scheme, inorganic carbon (HCO3 ?) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca2+ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O2. In Phase 2, PODCA is regenerated.  相似文献   

15.
The nature of the inorganic carbon (Ci) species actively taken up by cyanobacteria CO2 or HCO3 has been investigated. The kinetics of CO2 uptake, as well as that of HCO3 uptake, indicated the involvement of a saturable process. The apparent affinity of the uptake mechanism for CO2 was higher than that for HCO3. Though the calculated Vmax was the same in both cases, the maximum rate of uptake actually observed was higher when HCO3 was supplied. Ci uptake was far more sensitive to the carbonic anhydrase inhibitor ethoxyzolamide when CO2 was the species supplied. Observations of photosynthetic rate as a function of intracellular Ci level (following supply of CO2 or HCO3 for 5 seconds) led to the inference that HCO3 is the species which arrives at the inner membrane surface, regardless of the species supplied. When the two species were supplied simultaneously, mutual inhibition of uptake was observed.

On the basis of these and other results, a model is proposed postulating that a carboic anhydrase-like subunit of the Ci transport apparatus binds CO2 and releases HCO3 at or near a membrane porter. The latter transports HCO3 ions to the cell interior.

  相似文献   

16.
The inorganic carbon (Ci) accumulation and the intracellular location of carbonic anhydrase (CA, EC 4.2.1.1) in the halotolerant unicellular alga Dunaliella salina have been investigated. The rate of HCO3 -dependent O2 evolution was determined by growth conditions. Algae grown under high CO2 conditions (5% CO2 in air, v/v; high Ci cells) had a very low affinity for HCO3? at pH 7.0 and 8.2, whereas algae grown under low CO2 conditions (0.03% CO2 in air; low Ci cells) showed a high affinity for HCO3? at both pH values and were sensitive to Dextran-bound sulfonamide (DBS), an inhibitor of extracellular CA. The photosynthetic rate or HCO4? dependent O2 evolution was always higher at pH 7.0 than at pH 8.2. Ethoxyzolamide (EZ), an inhibitor of total (extacellular plus intracellular) CA activity, strongly inhibited photosynthesis at both pH values. During adaptation from high to low CO2 conditions CA activity increased in chloroplasts in a process dependent on the novo protein synthesis. Carbonic anhydrase activity was found in the supernatant and pellet fractions of chloroplast homogenates. The rate of photosynthesis of chloroplasts from low Ci cells was higher at pH 7.0 than at pH 8.2. The alkalinization of the growth medium, which took place only in the presence of Ci, was partially inhibited by DBS and completely by EZ. We suggest that in D. salina CO2 is the general form of Ci transported across the plasma membrane and the chloroplast envelope and that bicarbonate enters the cell mainly, although not entirely, by an ‘indirect’ mechanism after dehydration to CO2.  相似文献   

17.
Photosynthesis and cell composition of Porphyraleucosticta discs grown at low (< 0.0001% in air), current (control) and high (1% CO2 in air)inorganic carbon (Ci) concentrations were analyzed. Carbohydrate content in discs grown at high Ci increased (15.1 mg g-1 FW) with respect to the control (6.4 mg g FW-1), whereas soluble protein content decreased to one-third (5.6 to2.1 mg g-1 FW). Carbohydrate content was unaffected and soluble protein slightly increased in discs grown at low Ci. As a consequence of these changes, a lower C/N molar ratio (8.6) was found in the discs grown at low compared to high Ci(12.4). Nitrate reductase activity increased at high Ci from 0.3 ± 0.2 to 1.7 ± 0.4 μmolNO2 - g-1 FW h-1indicating that reduction and assimilation of nitrate were uncoupled. The response of photosynthesis to increasing irradiance, estimated from O2evolution vs. irradiance curves, was affected by the treatments. Maximum quantum yield (Φ O2°) and effective quantum yield (Φ O2) at 150 μmol photon m-2s-1 decreased by 20% and 50%, respectively, at low Ci. These differences could be due to changes in photosynthetic electron flow between PSII and PSI. Treatments also produced changes in maximal (Fv/Fm) and effective (ΔF/Fm′)quantum yield for photosystem II charge separation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The aim of this study was to determine how Chondrus crispus, a marine red macroalga, acquires the inorganic carbon (Ci) it utilizes for photosynthetic carbon fixation. Analyses of Ci uptake were done using silicone oil centrifugation (using multicellular fragments of thallus), infrared gas analysis, and gas chromatography. Inhibitors of carbonic anhydrase (CA), the band 3 anion exchange protein and Na+/K+ exchange were used in the study. It was found that: (a) C. crispus does not accumulate Ci internally above the concentration attainable by diffusion; (b) the initial Ci fixtion rate of C. crispus fragments saturates at approximately 3 to 4 millimolar Ci; (c) CA is involved in carbon uptake; its involvement is greatest at high HCO3 and low CO2 concentration, suggesting its participation in the dehydration of HCO3 to CO2; (d) C. crispus has an intermediate Ci compensation point; and (e) no evidence of any active or facilitated mechanism for the transport of HCO3 was detected. These data support the view that photosynthetic Ci uptake does not involve active transport. Rather, CO2, derived from HCO3 catalyzed by external CA, passively diffuses across the plasma membrane of C. crispus. Intracellular CA also enhances the fixation of carbon in C. crispus.  相似文献   

19.
We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118–125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A. marina. Treatment with strong white light (1,200 μmol quanta m?2 s?1) caused a parallel decrease in PSII oxygen evolution of intact cells and in extracted pigments Chl d, zeaxanthin, and α-carotene analyzed by high-performance liquid chromatography, with severe loss after 6 h. When cells were irradiated with 700 nm of light (100 μmol quanta m?2 s?1) there was also bleaching of Chl d and loss of photosynthetic activity. Interestingly, UVB radiation (138 μmol quanta m?2 s?1) caused a loss of photosynthetic activity without reduction in Chl d. Excess absorption of light by Chl d (visible or 700 nm) causes a reduction in photosynthesis and loss of pigments in light harvesting and photoprotection, likely by photoinhibition and inactivation of photosystem II, while inhibition of photosynthesis by UVB radiation may occur by release of Mn ion(s) in Mn4CaO5 center in photosystem II.  相似文献   

20.
Thylakoids were isolated from the leaves of three different plants (Pisum sativium L., Lactuca sativa L., and Raphanus sativus L.). The addition of HCO 3 ? to a suspension of salt-and HCO 3 ? -epleted thylakoids (suspended in salt-free medium) raised the rate of O2 evolution up to fourfold. This stimulation could be partially replaced by the addition of chloride or nitrate ions. However, the addition of HCO 3 ? in the presence of Cl? or NO 3 ? resulted in a higher stimulation of O2 evolution (sixfold in the presence of nitrate and sevenfold in the presence of chloride). On the other hand, the addition of HCO 3 ? to the thylakoids depleted from salt only raised the rate of O2 evolution by 10–15%, whereas 40–70% was obtained by the addition of nitrate or chloride ions. The fluorescence induction studies indicated a significant decrease in the yield of the variable fluorescence of the salt- and HCO 3 ? -depleted thylakoids. A partial increase in the fluorescence yield was obtained by the addition of HCO 3 ? alone. A typical fluorescence induction curves were obtained by the addition of HCO 3 ? in the presence of Cl? or NO 3 ? ions. The data obtained suggest a similar role for chloride and nitrate ions in O2 evolution in the Hill-reaction, which is restricted at the donor side of photosystem II, whereas bicarbonate plays its role at both sides (acceptor and donor sides). The presented data are those obtained for the thylakoids of P. sativium, which were more or less similar to those obtained for L. sativa and R. sativus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号