首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The net photosynthetic rate (P N), the sample room CO2 concentration (CO2S) and the intercellular CO2 concentration (C i) in response to PAR, of C3 (wheat and bean) and C4 (maize and three-colored amaranth) plants were measured. Results showed that photorespiration (R p) of wheat and bean could not occur at 2 % O2. At 2 % O2 and 0 μmol mol?1 CO2, P N can be used to estimate the rate of mitochondrial respiration in the light (R d). The R d decreased with increasing PAR, and ranged between 3.20 and 2.09 μmol CO2 m?2 s?1 in wheat. The trend was similar for bean (between 2.95 and 1.70 μmol CO2 m?2 s?1), maize (between 2.27 and 0.62 μmol CO2 m?2 s?1) and three-colored amaranth (between 1.37 and 0.49 μmol CO2 m?2 s?1). The widely observed phenomenon of R d being lower than R n can be attributed to refixation, rather than light inhibition. For all plants tested, CO2 recovery rates increased with increasing light intensity from 32 to 55 % (wheat), 29 to 59 % (bean), 54 to 87 % (maize) and 72 to 90 % (three-colored amaranth) at 50 and 2,000 μmol m?2 s?1, respectively.  相似文献   

2.
Stereocaulon foliolosum a fruticose type of lichen under its natural habitat is subjected to low temperature, high light conditions and frequent moisture stress due its rocky substratum. To understand as to how this lichen copes up with these stresses, we studied the reflectance properties, light utilization capacity and the desiccation tolerance under laboratory conditions. S. foliolosum showed light saturation point for photosynthesis at 390 μmol CO2 m?2 s?1 and the light compensation point for photosynthesis at 64 μmol CO2 m?2 s?1. Our experiments show that S. foliolosum has a low absorptivity (30–35 %) towards the incident light. The maximum rates of net photosynthesis and apparent electron transport observed were 1.9 μmol CO2 m?2 s?1 and 45 μmol e? m?2 s?1, respectively. The lichen recovers immediately after photoinhibition under low light conditions. S. foliolosum on subjecting to desiccation results in the decrease of light absorptivity and the reflectance properties associated with water status of the thalli show a change. During desiccation, a simultaneous decrease in photosynthesis, dark respiration and quenching in the fluorescence properties was observed. However, all the observed changes show a rapid recovery on rewetting the lichen. Our study shows that desiccation does not have a severe or long-term impact on S. foliolosum and the lichen is also well adapted to confront high light intensities.  相似文献   

3.
4.
To reduce CO2 emissions from alcoholic fermentation, Arthrospira platensis was cultivated in tubular photobioreactor using either urea or nitrate as nitrogen sources at different light intensities (60 μmol m?2 s?1?≤?I?≤?240 μmol m?2 s?1). The type of carbon source (pure CO2 or CO2 from fermentation) did not show any appreciable influence on the main cultivation parameters, whereas substitution of nitrate for urea increased the nitrogen-to-cell conversion factor (Y X/N ), and the maximum cell concentration (X m ) and productivity (P X ) increased with I. As a result, the best performance using gaseous emissions from alcoholic fermentation (X m ?=?2,960?±?35 g m?3, P X ?=?425?±?5.9 g m?3 day?1 and Y X/N ?=?15?±?0.2 g g?1) was obtained at I?=?120 μmol m?2 s?1 using urea as nitrogen source. The results obtained in this work demonstrate that the combined use of effluents rich in urea and carbon dioxide could be exploited in large-scale cyanobacteria cultivations to reduce not only the production costs of these photosynthetic microorganisms but also the environmental impact associated to the release of greenhouse emissions.  相似文献   

5.
Solar ultraviolet B (UVB) irradiance at the Earth’s surface is increasing due to anthropogenic influences. To evaluate the effects of enhanced UVB radiation on photosynthetic characteristics of the marine diatom Phaeodactylum tricornutum, the species was exposed to four levels of UVB radiation, 0, 0.25, 0.75, and 1.50 KJ m?2 day?1 for 7 days. Effects of UVB stress on net photosynthetic rate, net respiration rate, variable chlorophyll (Chl) fluorescence parameters, Chl a and carotenoid contents, and UV-absorbing compounds (UVACs) were investigated. Results showed that there were no significant differences in terms of net respiration rate or maximal photochemical efficiency of photosystem II (Fv/Fm) between the treatments in the short or long term. However, enhanced UVB radiation at an intensity of 0.16 W m?2 had a negative effect on the net photosynthetic rate, electron transport rate, and on the pathway of excess energy dissipation over the short term (1 to 5 days). Carotenoid and UVACs content increased under UVB radiation. Photosynthetic parameters were unaffected by UVB radiation on the seventh day indicating that P. tricornutum can adapt to UVB radiation in the long term. Results of the present study indicate that there is a dynamic balance between damage and adaptation in microalgae that enables them to adapt to UVB-induced photosystem alterations during both short-term and long-term exposure.  相似文献   

6.
We evaluated the nighttime CO2 flux (ecosystem respiration) on Rishiri Island, located at the northern tip of Hokkaido, Japan, from 2009 to 2011, by using the relationship between atmospheric 222Rn and CO2 concentrations. The annual mean CO2 flux was 1.8 μmol m?2 s?1, with a maximum monthly mean in July (4.6 ± 2.6 μmol m?2 s?1) and a broad minimum from December to March (0.33 ± 0.29 μmol m?2 s?1). The annual mean was comparable to fluxes at the JapanFlux sites in northern Japan. During the season of snow cover (mid-December to early April), the CO2 flux was low (0.45 ± 0.43 μmol m?2 s?1). Total annual respiration was estimated at 679 ± 174 g cm?2, about 8 % of which occurred during the season of snow cover.  相似文献   

7.
Chemical fertilizer agricultural wastewater is a typical high-strength wastewater that has dramatically triggered numerous environmental problems in China. The Chlorella vulgaris microalgae biological wastewater treatment system used in this study can effectively decontaminate the high-strength carbon and nitrogen wastewater under an optimum light wavelength and light intensity supply strategy. The descending order of both the dry weight for C. vulgaris reproduction and wastewater nutrient removal efficiency is red > white > yellow > purple > blue > green, which indicates that red light is the optimum light wavelength. Furthermore, rather than constant light, optimal light intensity is used for the incremental light intensity strategy. The phases for the optimal light intensity supply strategy are as follows: Phase 1 from 0 to 48 h at 800 μmol m?2 s?1; Phase 2 from 48 to 96 h at 1,200 μmol m?2 s?1; and Phase 3 from 96 to 144 h at 1,600 μmol m?2 s?1. Additionally, the optimal cultivation time is 144 h.  相似文献   

8.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

9.
In the early nineties, Undaria pinnatifida has been accidentally introduced to Nuevo Gulf (Patagonia, Argentina) where the environmental conditions would have favored its expansion. The effect of the secondary treated sewage discharge from Puerto Madryn city into Nueva Bay (located in the western extreme of Nuevo Gulf) is one of the probable factors to be taken into account. Laboratory cultures of this macroalgae were conducted in seawater enriched with the effluent. The nutrients (ammonium, nitrate and phosphate) uptake kinetics was studied at constant temperature and radiation (16?°C and 50 μE m?2 s?1 respectively). Uptake kinetics of both inorganic forms of nitrogen were described by the Michaelis–Menten model during the surge phase (ammonium: V max sur: 218.1 μmol h?1 g?1, K s sur: 476.5 μM and nitrate V max sur: 10.7 μmol h?1 g?1, K s sur: 6.1 μM) and during the assimilation phase (ammonium: V max ass: 135.6 μmol h?1 g?1, K s ass: 407.2 μM and nitrate V max ass: 1.9 μmol h?1 g?1, K s ass: 2.2 μM), with ammonium rates always higher than those of nitrate. Even though a net phosphate disappearance was observed in all treatments, uptake kinetics of this ion could not be properly estimated by the employed methodology.  相似文献   

10.

Objectives

To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides).

Results

Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m?2 s?1 than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a.

Conclusion

White light at 90 μmol m?2 s?1 or blue light 30 μmol m?2 s?1 were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.
  相似文献   

11.
The influence of artificial illumination on upstream and downstream operations for biomass production of Tolypothrix tenuis as a basic component of a powdered cyanobacterial biofertilizer was studied. Cultures were operated semi-continuously for 18 months at harvesting frequencies of 4, 7, 10, and 14 days in two vertical plate photobioreactors of 1.5 and 5 cm of light path and illuminated at two different light intensities: high (290 μmol photons m?2 s?1) and normal (60 μmol photons m?2 s?1). Biomass was separated by self-flocculation and finally processed as a dried powder. The cellular concentration and volumetric productivity were superior in photobioreactors of short light path at high light intensity, while the overall areal productivity was higher in the photobioreactor of 5 cm at normal light intensity with weekly harvest frequency. The viability preservation of the dried and milled biomass was greatly enhanced by the use of halogen lamps and subsequent ionic flocculation with 10 mM MgSO4 plus 10 mM CaCl2. An optimum value of the retained viability index (RVI10) was maintained for 24 months, while a sharp viability declination and cellular death were produced after 12 months with fluorescent tubes, which represents a relevant aspect in the commercialization step of this type of biofertilizer.  相似文献   

12.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

13.
The present study is aimed at assessing the extent of arsenic (As) toxicity under three different light intensities—optimum (400 μmole photon m?2 s?1), sub-optimum (225 μmole photon m?2 s?1), and low (75 μmole photon m?2 s?1)—exposed to Helianthus annuus L. var. DRSF-113 seedlings by examining various physiological and biochemical parameters. Irrespective of the light intensities under which H. annuus L. seedlings were grown, there was an As dose (low, i.e., 6 mg kg?1 soil, As1; and high, i.e., 12 mg kg?1 soil, As2)-dependent decrease in all the growth parameters, viz., fresh mass, shoot length, and root length. Optimum light-grown seedlings exhibited better growth performance than the sub-optimum and low light-grown seedlings; however, low light-grown plants had maximum root and shoot lengths. Accumulation of As in the plant tissues depended upon its concentration used, proximity of the plant tissue, and intensity of the light. Greater intensity of light allowed greater assimilation of photosynthates accompanied by more uptake of nutrients along with As from the medium. The levels of chlorophyll a, b, and carotenoids declined with increasing concentrations of As. Seedlings acquired maximum Chl a and b under optimum light which were more compatible to face As1 and As2 doses of As, also evident from the overall status of enzymatic (SOD, POD, CAT, and GST) and non-enzymatic antioxidant (Pro).  相似文献   

14.
Phenology, irradiance, and temperature characteristics of an edible brown alga, Undaria pinnatifida (Laminariales), were examined from the southernmost natural population in Japan, both by culturing gametophytes and examining the photosynthetic activity of sporophytes using dissolved oxygen sensors and pulse amplitude-modulated chlorophyll fluorometer (IMAGING-PAM). Our surveys confirmed that sporophytes were present between winter and early summer, but absent by July. IMAGING-PAM experiments were used to measure maximum effective quantum yield (ΦII at 0 μmol photons m?2 s?1) for each of 14 temperatures (8–36 °C). Oxygen production was also determined over a coarser temperature gradient. Net photosynthesis and ΦII (at 0 μmol photons m?2 s?1) were observed to be temperature-dependent; the maximum ΦII was estimated to be 0.67, occurred at 21.2 °C, and was nearly identical to the optimal temperature of the net photosynthetic rate (21.7 °C). A net photosynthesis–irradiance (P–E) model revealed that saturation irradiance (E k) was 119.5 μmol photons m?1 s?1, and the compensation irradiance (E c) was 17.4 μmol photons m?1 s?1. Culture experiments on the gametophytes revealed that most individuals could not survive temperatures over 28 °C and that growth rates were severely inhibited. Based on our observations, temperatures greater than 20 °C are likely to influence photosynthetic activity and gametophyte survival, and therefore, it is possible that this species might become locally extinct if seawater temperatures in this region continue to rise.  相似文献   

15.
Localized permafrost disturbances such as active layer detachments (ALDs) are increasing in frequency and severity across the Canadian Arctic impacting terrestrial ecosystem functioning. However, the contribution of permafrost disturbance-carbon feedbacks to the carbon (C) balance of Arctic ecosystems is poorly understood. Here, we explore the short-term impact of active layer detachments (ALDs) on carbon dioxide (CO2) exchange in a High Arctic semi-desert ecosystem by comparing midday C exchange between undisturbed areas, moderately disturbed areas (intact islands of vegetation within an ALD), and highly disturbed areas (non-vegetated areas due to ALD). Midday C exchange was measured using a static chamber method between June 23 and August 8 during the 2009 and 2010 growing seasons. Results show that areas of high disturbance had significantly reduced gross ecosystem exchange and ecosystem respiration (R E) compared to control and moderately disturbed areas. Moderately disturbed areas showed significantly enhanced net ecosystem exchange compared to areas of high disturbance, but were not significantly different from control areas. Disturbance did not significantly impact soil thermal, physical or chemical properties. According to average midday fluxes, ALDs as a whole (moderately disturbed areas: ?1.942 μmol m?2 s?1+ highly disturbed areas: 2.969 μmol m?2 s?1) were a small CO2 source of 1.027 μmol m?2 s?1 which did not differ significantly from average midday fluxes in control areas 1.219 μmol m?2 s?1. The findings of this study provide evidence that the short-term impacts of ALDs on midday, net C exchange and soil properties in a High Arctic semi-desert are minimal.  相似文献   

16.
Biomass and lipid productivities of Isochrysis galbana were optimized using nutrients of molasses (4, 8, 12 g l?1), glucose (4, 8, 12 g l?1), glycerol (4, 8, 12 g l?1) and yeast extract (2 g l?1). Combinations of carbon sources at different ratios were evaluated in which the alga was grown at three different light intensities (50, 100 and 150 μmol m?2 s?1) under the influence of three different photoperiod cycles (12/12, 18/6 and 24/0 h light/dark). A maximum cell density of 8.35 g l?1 with 32 % (w/w) lipid was achieved for mixotrophic growth at 100 μmol m?2 s?1 and 18/6 h light/dark with molasses/glucose (20:80 w/w). Mixotrophic cultivation using molasses, glucose and glycerol was thus effective for the cultivation of I. galbana.  相似文献   

17.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

18.
Defoliation occurs in castor due to several reasons, but the crop has propensity to compensate for the seed yield. Photosynthetic efficiency in terms of functional (gas exchange and chlorophyll fluorescence) and structural characteristics (photosynthetic pigment profiles and anatomical properties) of castor capsule walls under light- and dark-adapted conditions was compared with that of leaves. Capsule wall showed high intrinsic efficiency of photosystem II (F v/F m, 0.82) which was comparable to leaves (F v/F m, 0.80). With increasing photon flux densities (PFD), actual quantum yields and photochemical quenching coefficients of the capsule walls were similar to that in leaves, while electron transport rates reached a maximum corresponding to about 118 % of the leaves. However, maximum net photosynthetic rate of the capsule walls (2.60 µmol CO2 m?2 s?1) was less than one-fourth of the leaves (15.67 µmol CO2 m?2 s?1) at the CO2 concentration of 400 µmol mol?1, and the difference was attributed to about 80 % lower stomatal density and the 75 % lower total chlorophyll content of capsule walls than the leaves. Furthermore, seed weight in dark-adapted capsules was 2.70–12.42 % less as compared to the capsules developed under light. The results indicate that castor capsule walls are photosynthetically active (about 15–30 % of the leaves) and contribute significantly to carbon fixation and seed yield accounting for 10 % photoassimilates towards seed weight.  相似文献   

19.
Sanitary sewage can create serious environmental problems if discharged directly into natural waters without appropriate treatment. This study showed that red light is the optimum light wavelength for growing microalgae Chlorella vulgaris in microalgae biological wastewater treatment systems, given a harvest time of 144 h. Only moderate light intensities (1,000, 1,500, 2,000, and 2,500 μmol m?2 s?1) were able to remove nutrients from synthetic sanitary sewage, but higher light intensity led to better nutrient removal effects. Because of economic considerations, the optimum light intensity range for efficient nutrient removal was determined to be between 1,500 and 2,000 μmol m?2 s?1. Furthermore, nutrient removal efficiency was significantly affected by light wavelength, light intensity, the interaction of these two factors, and the interaction among light wavelength, light intensity, and influent carbon/nitrogen (C/N) ratios. Total nitrogen and total phosphorus removal efficiency was also significantly affected by influent C/N ratios. Appropriate control of carbon and nitrogen source concentrations enabled optimal nutrient removal. The optimal influent C/N ratio was determined to be 6:1.  相似文献   

20.
A bottleneck for genetic research and breeding of crop plants is the time taken to producing large pure line segregating populations so called recombinant inbred lines (RILs). One way to overcome this problem is through use of the single-seed-decent (SSD) process under in vitro conditions. A number of factors that may affect in vitro SSD approach of wheat including temperature, light duration and intensity, salt strength and carbohydrate concentration were investigated in this study. Under the in vitro conditions, 45 days per generation was achieved for an early flowering wheat genotype Emu Rock, allowing eight generations per annum; 58 days per generation was achieved for mid flowering genotypes, allowing six generations per annum. The results showed that a variation of growth environment before and after three-leaf stage allowed in vitro seed-set with a relatively short generation time. Specifically, the plantlets were first grown under 22?°C with a light intensity of 145 μmol m?2 s ?1 (16 h d?1) for 20 days (around three-leaf stage), and then moved to an environment of 28?°C and 500 μmol m?2 s?1 (20 h d?1) light. The culture medium was 1/2 strength Murashige and Skoog (MS) with modification of adding ten times of extra KH2PO4 and 4% sucrose. The fully in vitro protocol resulted in 100% flowering rate and average seed set rate of 91.5% in Emu Rock and Zippy. It can be further fine-tuned to suit different genotypes and it has a potential for factory scale mass-production of RILs for genetic studies and practical breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号