首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The expression of the types of tachykinin receptors in the dorsal root ganglion (DRG) neurons by means ofXenopus oocyte expressing system was studied. Poly(A)+ RNAs were extracted from cat cervical and lumbar DRG. Two days after injection of Poly (A)+ RNAs, the oocytes were recorded with the two-electrode voltage clamp technique. In the oocytes injected with DRG poly(A)+ RNA, [Sar9, Met(O2)11]-substance P(Sar -SP, 1 μmol/L), neurokinin A (NKA, 1 μmol/L) or [β-Ala8]-neurokinin A(4−10) (Ala-NKA, 1 μmol/L) produced an inward current comprising a rapid spike and a long sustained oscillatory component for several minutes. Sar-SP induced response was blocked by NK-1 antagonist L-668, 169 (1 μmol/L), but not by NK-2 antagonist L-659, 877(1μmol/L). In contrast, Ala-NKA and NKA responses were only blocked by L-659, 877. The oocytes injected with DH Poly(A)+RNA also responded to Sar-SP and NKA with similar inward currents, which were selectively blocked by L-668, 169 and L-659, 877, respectively. These tachykinins-induced responses had a potent desensitization. The present data indicate expression of NK-1 and NK-2 receptors in DRG neurons, suggesting that there may be tachykinin autoreceptors on the nociceptive primary afferent terminals. Project supported by the National Natural Science Foundation of China (Grant No. 39370249).  相似文献   

2.
Tao YX  Zhao ZQ 《生理学报》1998,50(4):361-366
本文用Fos作为背角伤害性反应神经元活动的一个标志物,结合免疫细胞化学和神经药理学方法,观察了速激肽受体拮抗剂对福尔马林诱发的脊髓c-fos原癌基因表达的影响。一侧大鼠后肢跖部皮下注射福尔马林,仅在同侧脊髓背角有c-fos表达。Fos阳性神经元最密集分布于I层和Ⅱ层背侧的内侧部,中等量分布于Ⅳ层和V型,少量定位于Ⅱ层腹侧部、Ⅲ、Ⅵ和Ⅹ层。若预先在一侧大鼠后肢跖部皮下注射福尔马林前,鞘内给予神经激肽  相似文献   

3.
Abstract

cDNA clones for NK-2 receptors (NK-2R) were isolated from guinea-pig lung (GP1) and rabbit pulmonary artery (Rpa) using a polymerase chain reaction based methodology. The GPI NK-2R consists of 402 amino acids and encodes a protein with a relative molecular mass of 45,097. The Rpa NK-2R consists of 384 amino acids and encodes a protein with a relative molecular mass of 43,169. The GPI and Rpa NK-2Rs share significant amino acid sequence homology amongst themselves (90.l%), as well as with human, bovine, hamster and rat NK-2 receptors.The two receptors were stably transfected into mouse erythroleukemia cells, high-speed membranes were prepared from induced cells and their pharmacological properties examined utilizing [3H]-NKA in a receptor-binding assay. [3H]NKA bound to both NK-2Rs with high affinity (KD = 2-7 nM) and saturable (Bmax = 633 - 9000 fmol/mg protein) manner which was inhibited by GTP analogs. Competition experiments with agonists demonstrated identical order of potency in both NK-2Rs: NKA > [Nle1O]NKA(4-l0) > [β-Ala8]NKA(4-10) ? Substance P ? Senktide. Similarly, an identical profile for both receptors was observed with selective NK-2 antagonists: SR48,968 > MEN10.376 ? R396. The rank order of antagonist affinity is consistent with that in cloned human NK-2R and the observations of NK-2 receptor pharmacology in native human, guinea pig and rabbit tissues.  相似文献   

4.
Agonist and antagonist binding to tachykinin peptide NK-2 receptors   总被引:10,自引:0,他引:10  
S H Buck  S A Shatzer 《Life sciences》1988,42(26):2701-2708
The binding of tachykinin peptides and fragments to NK-2 receptor sites in hamster urinary bladder membranes was examined and compared to binding to NK-1 receptor sites in rat submandibular gland. Neurokinin A (NKA) and its C-terminal fragments bound with highest NK-2 affinity and selectivity. N-terminal fragments of NKA did not bind to either type of receptor. Kassinin and eledoisin were NK-2 selective while physalaemin, phyllomedusin, and uperolein were NK-1 selective. Of fifteen tachykinin antagonists examined, none exhibited appreciable affinity or selectivity (relative to agonists) for NK-1, NK-2, or rat cerebral cortical NK-3 receptor sites. NKA binding to NK-2 sites was stimulated by Mn++ greater than Mg++ greater than Ca++. At the optimal concentration, the Mn++ stimulation was due to both an increased Bmax and increased affinity. The nonhydrolyzable guanine nucleotide, GppNHp, reduced agonist binding but not antagonist binding to NK-2 receptor sites. The nucleotide effect was due to a reduction in both Bmax and affinity and was potentiated by Mn++. The results indicate that tachykinin NK-2 receptor sites possess distinct structural requirements for agonists and are linked to a G-protein coupling system.  相似文献   

5.
I Iwamoto  J A Nadel 《Life sciences》1989,44(16):1089-1095
To determine the tachykinin receptor subtype that mediates the increase in vascular permeability, we examined the rank order of potency of tachykinins for inducing plasma extravasation in guinea pig skin and the specificity of tachykinin-induced tachyphylaxis of the responses. Plasma extravasation of the skin induced by tachykinins was NK-1 (SP-P)-type response from the rank order of potency of mammalian and nonmammalian tachykinins. Tachyphylaxis of the vascular response was induced by intradermal preinjection of mammalian tachykinins and was tachykinin-specific. In substance P (SP) tachyphylaxis (where SP was preinjected), the response to SP, not to neurokinin A (NKA) or neurokinin B (NKB), was decreased. In NKA tachyphylaxis and NKB tachyphylaxis, the response to NKA, not to SP or NKB, and the response to NKB, not to SP or NKA, were decreased, respectively. Thus, we conclude that the apparent NK-1-type response is mediated through three mammalian tachykinin receptors, NK-1, NK-2, and NK-3, which are specifically stimulated by their preferred agonist, SP, NKA, and NKB, respectively.  相似文献   

6.
Although neurokinin A (NKA), a tachykinin peptide with sequence homology to substance P (SP), is a weak competitor of radiolabeled SP binding to the NK-1 receptor (NK-1R), more recent direct binding studies using radiolabeled NKA have demonstrated an unexpected high-affinity interaction with this receptor. To document the site of interaction between NKA and the NK-1R, we have used a photoreactive analogue of NKA containing p-benzoyl-L-phenylalanine (Bpa) substituted in position 7 of the peptide. Peptide mapping studies of the receptor photolabeled by (125)I-iodohistidyl(1)-Bpa(7)NKA have established that the site of photoinsertion is located within a segment of the receptor extending from residues 178 to 190 (VVCMIEWPEHPNR). We have previously shown that (125)I-BH-Bpa(8)SP, a photoreactive analogue of SP, covalently attaches to M(181) within this same receptor sequence. Importantly, both of these peptides ((125)I-iodohistidyl(1)-Bpa(7)NKA and (125)I-BH-Bpa(8)SP) have the photoreactive amino acid in an equivalent position within the conserved tachykinin carboxyl-terminal tail. In this report, we also show that site-directed mutagenesis of M(181) to A(181) in the NK-1R results in a complete loss of photolabeling of both peptides to this receptor site, indicating that the equivalent position of SP and NKA, when bound to the NK-1R, contact the same residue.  相似文献   

7.
Wang DS  Xu TL  Li JS 《生理学报》1999,51(4):361-370
采用制霉菌素穿孔膜片箍技术,研究了P物质对急性分离的大鼠骶髓后的核神经元士的宁敏感性甘氨酸反应的调控作用。在箍制电压为-40mV时,SP时1mmol/L-1μmol/L之间呈浓度依赖性地增强30μmol/L甘氨酸激活的氯电流。SP既不改变IGly的翻转电位,也不是影响Gly与其受体的亲和力。Spantide和选择性N中受体拮抗剂,L-668,169,可阻断SP的增强作用,而选择性NK2受体拮抗剂,  相似文献   

8.
Reactive oxygen species (ROS) play a crucial role in pathophysiology of the cardiovascular system. The present study was designed to analyze the redox sensitivity of G-protein-activated inward rectifier K+ (GIRK) channels, which control cardiac contractility and excitability. GIRK1 subunits were heterologously expressed in Xenopus laevis oocytes and the resulting K+ currents were measured with the two-electrode voltage clamp technique. Oxygen free radicals generated by the hypoxanthine/xanthine oxidase system led to a marked increase in the current through GIRK channels, termed superoxide-induced current (ISO). Furthermore, ISO did not depend on G-protein-dependent activation of GIRK currents by coexpressed muscarinic m2-receptors, but could also be observed when no agonist was present in the bathing solution. Niflumic acid at a concentration of 0.5 mmol/l did not abolish ISO, whereas 100 μmol/l Ba2+ attenuated ISO completely. Catalase (106 i.u./l) failed to suppress ISO, whereas H2O2 concentration was kept close to zero, as measured by chemiluminescence. Hence, we conclude that O2 or a closely related species is responsible for ISO induction. Our results demonstrate a significant redox sensitivity of GIRK1 channels and suggest redox-activation of G-protein-activated inward rectifier K+ channels as a key mechanism in oxidative stress-associated cardiac dysfunction.  相似文献   

9.
A potent and selective agonist for NK-2 tachykinin receptor   总被引:11,自引:0,他引:11  
Replacement of the glycine in position 8 of the C-terminal heptapeptide NKA(4-10) with beta-alanine give rise to a potent and selective agonist for the NK-2 tachykinin receptor. The affinity of [beta-Ala8]-NKA(4-10) to the NK-2 receptor is enhanced by almost one order of magnitude as compared to NKA(4-10), while affinity decreases at about the same extent at NK-1 and NK-3 receptors, respectively. Synthesis and biological activities of a series of NKA(4-10) analogues systematically replaced in each position with beta-alanine are also reported.  相似文献   

10.
(Na++K+)-ATPase (NKA) comprises two basic α and β subunits: The larger α subunit catalyzes the hydrolysis of ATP for active transport of Na+ and K+ ions across the plasma membrane; the smaller β subunit does not take part in the catalytic process of the enzyme. Little is known about allosteric regulation of the NKA β subunit. Here, we report a surprising finding that extracellular stimuli on the native β1 subunit can generate a significant impact on the catalytic function of NKA. By using a β1 subunit-specific monoclonal antibody JY2948, we found that the JY2948–β1 subunit interaction markedly enhances the catalytic activity of the enzyme and increases the apparent affinity of Na+ and K+ ions for both ouabain-resistant rat NKA and ouabain-sensitive dog NKA. This study provides the first evidence to identify an allosteric binding site residing on the NKA β1 subunit and uncovers the latent allosteric property of the β1 subunit, which remotely controls the NKA catalytic function.  相似文献   

11.
A highly potent and selective agonist to the tachykinin NK-3 receptor, [pGlu6, N-MePhe8, Aib9] substance P (6–11) ( I ), was synthesized via the solid phase method. The ED50 of I was 4n M in the guinea pig ileum in the absence of atropine (NK-1 + NK-3 receptors) and this agonist was 5000-fold less potent in the presence of atropine (NK-1 receptor). The analogue was virtually inactive in the rat vas deferens (NK-2 receptor). A detailed analysis of the solution conformation of this analogue in DMSO-d6 and in a DMSO-d6 H2O cryornixture was carried out by a combination of 1H-nmr 2D techniques (DQF-COSY, TOCSY, NOESY and ROESY) and model building based on empirical energy calculations. Peptide I exists as a mixture of isomers containing cis and trans Phe-N-MePhe peptide bonds. The main isomer, containing a cis Phe-N-MePhe peptide bond, shows a preferred folded conformation characterized by a type VI β-turn with Phe and N-MePhe in the i + 1 and i + 2 positions. The turn is followed by a helical segment extending to the C-terminal. This conformation is compared to previously reported conformations of other selective tachykinin agonists and may be a promising lead for the design of novel NK-3 agonists with additional conformational constraints. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Neurokinin-1 receptor (NK-1) plays an important role in nociception. The present study was to explore whether activation of peripheral NK-1 receptor, especially expressed on primary sensory afferents, could induce hyperalgesia and sensitize C-type sensory afferents. (1) Intraplantar administration of NK-1 agonist [Sar9, Met(O2)11]SP (Sar-SP, 0.2, 1 nmol, 20 microl) produced significant thermal hyperalgesia and edema, which was blocked by co-injection of NK-1 antagonist WIN51,708 (10 nmol). But in the rats with compound 48/80 treatment for mast cell depletion, the Sar-SP-induced edema, but not hyperalgesia, was attenuated. (2) Close-arterial injection of Sar-SP (1 nmol, 0.1 ml) excited and sensitized sensory C afferents of the sural nerve to heat stimuli. The results suggest involvement of NK-1 receptors expressed on the peripheral afferent terminals in thermal hyperalgesia mediated by directly sensitizing C-type sensory afferents.  相似文献   

13.
Grant J 《PloS one》2012,7(2):e31697
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+)-imaging on isolated taste cells, it was observed that SP induces Ca(2+) -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+)-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+)-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+)-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+) responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.  相似文献   

14.
The effects of glutamate and its agonists and antagonists on the swelling of cultured astrocytes were studied. Swelling of astrocytes was measured by [3H]-O-methyl-D-glucose uptake. Glutamate at 0.5, 1 and 10mmol/L and irons-l-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD), a metabotropic glutamate receptor (mGluR) agonist, at 1 mmol/L caused a significant increase in astrocytic volume, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) was not effective. L-2-amino-3-phosphonopropionic acid (L-AP3), an antagonist of mGluR, blocked the astrocytic swelling induced by trans-ACPD or glutamate. In Ca2+-free condition, glutamate was no longer effective. Swelling of astrocytes induced by glutamate was not blocked by CdCl2 at 20 μmol/L, but significantly reduced by CdCl2 at 300 μmol/L and dantrolene at 30 μmol/L. These findings indicate that mGluR activation results in astrocytic swelling and both extracellular calcium and internal calcium stores play important roles in the genes  相似文献   

15.
The experiments were perfomed on transvcrsus abdominis muscle of Elaphe dione by subendothelial recording. The results indicate that in snake motor nerve endings there exist four types of K* channels, i.e. voltage-dependent fast and slow K channels, Ca2 -activated K channel and ATP-sensitive K channel, (i) The typical wave form of snake terminal current was the double-peaked negativity in standard solution. The first peak was at-tributed to Na influx (INa) in nodes of Ranvier. The second one was blocked by 3, 4-aminopyridine (3, 4-DAP) or te-traethylammonium (TEA), which corresponded to fast K outward current (IKF) through the fast K* channels in terminal part, (ii) After IKF as well as the slow K current (IKS) were blocked by 3, 4-DAP, the TEA-sensitive Ca2 -dependent K current (IK(Ca)) passing through Ca2 -activated K channel was revealed, whose amplitude depended on [K ]and [Ca2 ] It was blocked by Ba2 , Cd2 or Co2 . (iii) IK.F and IK(Ca) were blocked by TEA, while IK.S was retained. It  相似文献   

16.
17.
G Saviano  P A Temussi  A Motta  C A Maggi  P Rovero 《Biochemistry》1991,30(42):10175-10181
NKA (4-10), the C-terminal heptapeptide fragment (Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) of tachykinin NKA, is more active than the parent native compound in the interaction with the NK-2 receptor. Substitution of Gly8 with the more flexible residue beta-Ala8 increases its selectivity with respect to other two known receptors (NK-1 and NK-3), whereas substitution with either D-Ala8 or GABA8 deprives the peptide of its biological activity. These findings can be interpreted by a conformational analysis based on NMR studies in DMSO-d6 and in a DMSO-d6/H2O cryoprotective mixture combined with internal energy calculations. NKA(4-10) is characterized by a structure containing a type I beta-turn extending from Ser5 to Gly8, followed by a gamma-turn centered on Gly8, whereas for [beta-Ala8]NKA(4-10) is possible to suggest a type I beta-turn extending from Ser5 to beta-Ala8, followed by a C8 turn comprising beta-Ala8 and Leu9 and by another beta-turn extending from beta-Ala8 to the terminal NH2. The preferred conformation of [beta-Ala8]NKA(4-10) is not compatible with models for NK-1 and NK-3 agonists proposed on the basis of rigid peptide agonists [Levian-Teitelbaum et al. (1989) Biopolymers 28, 51-64; Sumner & Ferretti (1989) FEBS Lett. 253, 117-120]. The preferred solution conformation of [beta-Ala8]NKA(4-10) may thus be considered as a likely bioactive conformation for NK-2 selective peptides.  相似文献   

18.
The chemical messengers released onto second-order dorsal horn neurons from the spinal terminals of contraction-activated group III and IV muscle afferents have not been identified. One candidate is the tachykinin substance P. Related to substance P are two other tachykinins, neurokinin A (NKA) and neurokinin B (NKB), which, like substance P, have been isolated in the dorsal horn of the spinal cord and have receptors there. Whether NKA or NKB plays a transmitter/modulator role in the spinal processing of the exercise pressor reflex is unknown. Therefore, we tested the following hypotheses. After the intrathecal injection of a highly selective NK-1 (substance P) receptor antagonist onto the lumbosacral spinal cord, the reflex pressor and ventilatory responses to static muscular contraction will be attenuated. Likewise, after the intrathecal injection either of an NK-2 (NKA) receptor antagonist or an NK-3 (NKB) receptor antagonist onto the lumbrosacral spinal cord, the reflex pressor and ventilatory responses to static contraction will be attenuated. We found that, 10 min after the intrathecal injection of 100 micrograms of the NK-1 receptor antagonist, the pressor and ventilatory responses to contraction were significantly (P < 0.05) attenuated. Mean arterial pressure was attenuated by 13 +/- 3 mmHg (48%) and minute volume of ventilation by 120 +/- 38 ml/min (34%). The cardiovascular and ventilatory responses to contraction before either 100 micrograms of the NK-2 receptor antagonist or 100 micrograms of the NK-3 receptor antagonist were not different (P > 0.05) from those after the NK-2 or the NK-3 receptor antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two peptides from the tachykinin family, substance P (SP) and neurokinin A (NKA), were identified as neurotransmitters (co-transmitters) of non-adrenergic non-cholinergic (NANCh) excitation in the gastrointestinal tract. The contraction of smooth muscles produced by tachykinins released from the excitatory enteric motoneurons is mediated by the NK1 and/or the NK2 tachykinin receptors. The differing contribution of these receptors in mediating the NANCh excitatory responses has been demonstrated in various regions of the intestine. The NK3 tachykinin receptors are confined only to the enteric neurons; they mediate release of different excitatory and inhibitory transmitters. The main secondary messenger pathway for all three tachykinin receptors is phosphoinositide breakdown that results in an increase of intracellular Ca2+ concentration. Signal transduction mechanisms are still not adequately known for tahykinin receptors. A multiple ionic mechanism has been proposed to mediate excitatory action of SP; it comprises activation of non-selective cationic channels, or activation of maxi Cl channels, and/or inhibition of K+ channels. Data about the ionic mechanism underlying the NK2 receptor activation are still missing. In conclusion, SP and NKA play a physiological role as NANCh neurotransmitters in smooth muscles of the gastrointestinal tract and, therefore, tachykinins may have a significant pathophysiological relevance in humans.Neirofiziologiya/Neurophysiology, Vol. 27, No. 5/6, pp. 425–432, September–December, 1995.  相似文献   

20.
Cardiac hypertrophy plays a major role in heart failure and is related to patient morbidity and mortality. Calcium overloading is a main risk for cardiac hypertrophy, and Na+/K+-ATPase (NKA) has been found that it could not only regulate intracellular Na+ levels but also control the intracellular Ca2+ ([Ca2+]i) level through Na+/Ca2+-exchanger (NCX). Recent studies have reported that klotho could affect [Ca2+]i level. In this study, we aimed at exploring the role of klotho in improving isoproterenol-induced hypertrophic response of H9C2 cells. The H9C2 cells were randomly divided into control and isoproterenol (ISO) (10 μM) groups. Klotho protein (10 μg/ml) or NKAα2 siRNA was used to determine the changes in isoproterenol-induced hypertrophic response. The alterations of [Ca2+]i level were measured by spectrofluorometry. Our results showed that H9C2 cells which were treated with isoproterenol presented a higher level of [Ca2+]i and hypertrophic gene expression at 24 and 48 h compared with the control group. Moreover, the expressions of NKAα1 and NKAα2 were both increased in control and ISO groups after treating with klotho protein; meanwhile, the NKA activity was increased and NCX activity was decreased after treatment. Consistently, the [Ca2+]i level and hypertrophic gene expression were decreased in ISO group after klotho protein treatment. However, these effects were both prevented by transfecting with NKAα2 siRNA. In conclusion, these findings demonstrated that klotho inhibits isoproterenol-induced hypertrophic response in H9C2 cells by activating NKA and inhibiting the reverse mode of NCX and this effect may be associated with the upregulation of NKAα2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号