首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

2.
Lichtenthaler  H.K.  Babani  F.  Langsdorf  G.  Buschmann  C. 《Photosynthetica》2000,38(4):521-529
With a flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) the photosynthetic activity of several thousand image points of intact shade and sun leaves of beech were screened in a non-destructive way within a few seconds. The photosynthetic activity was determined via imaging the Chl fluorescence at maximum Fp and steady state fluorescence Fs of the induction kinetics (Kautsky effect) and by a subsequent determination of the images of the fluorescence decrease ratio RFd and the ratio Fp/Fs. Both fluorescence ratios are linearly correlated to the photosynthetic CO2 fixation rates. This imaging method permitted to detect the gradients in photosynthetic capacity and the patchiness of photosynthetic quantum conversion across the leaf. Sun leaves of beech showed a higher photosynthetic capacity and differential pigment ratios (Chl a/b and Chls/carotenoids) than shade leaves. Profile analysis and histogram of the Chl fluorescence yield and the Chl fluorescence ratios allow to quantify the differences in photosynthetic activity between different leaf parts and between sun and shade leaves with a high statistical significance.  相似文献   

3.
A flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) is described that allows to screen and image the photosynthetic activity of several thousand leaf points (pixels) of intact leaves in a non-destructive way within a few seconds. This includes also the registration of several thousand leaf point images of the four natural fluorescence bands of plants in the blue (440 nm) and green (520 nm) regions as well as the red (near 690 nm) and far-red (near 740 nm) Chl fluorescence. The latest components of this Karlsruhe FL-FIS are presented as well as its advantage as compared to the classical single leaf point measurements where only the fluorescence information of one leaf point is sensed per each measurement. Moreover, using the conventional He-Ne-laser induced two-wavelengths Chl fluorometer LITWaF, we demonstrated that the photosynthetic activity of leaves can be determined measuring the Chl fluorescence decrease ratio, RFd (defined as Chl fluorescence decrease Fd from maximum to steady state fluorescence Fs:Fd/Fs), that is determined by the Chl fluorescence induction kinetics (Kautsky effect). The height of the values of the Chl fluorescence decrease ratio RFd is linearly correlated to the net photosynthetic CO2 fixation rate P N as is indicated here for sun and shade leaves of various trees that considerably differ in their P N. Imaging the RFd-ratio of intact leaves permitted the detection of considerable gradients in photosynthetic capacity across the leaf area as well as the spatial heterogeneity and patchiness of photosynthetic quantum conversion within the control leaf and the stressed plants. The higher photosynthetic capacity of sun versus shade leaves was screened by Chl fluorescence imaging. Profile analysis of fluoresence signals (along a line across the leaf area) and histograms (the signal frequency distribution of the fluorescence information of all measured leaf pixels) of Chl fluorescence yield and Chl fluorescence ratios allow, with a high statistical significance, the quantification of the differences in photosynthetic activity between various areas of the leaf as well as between control leaves and water stressed leaves. The progressive uptake and transfer of the herbicide diuron via the petiole into the leaf of an intact plant and the concomitant loss of photosynthetic quantum conversion was followed with high precision by imaging the increase of the red Chl fluorescence F690. Differences in the availability and absorption of soil nitrogen of crop plants can be documented via this flash-lamp fluorescence imaging technique by imaging the blue/red ratio image F440/F690, whereas differences in Chl content are detected by collecting images of the fluorescence ratio red/far-red, F690/F740.  相似文献   

4.
The differential pigment composition and photosynthetic activity of sun and shade leaves of deciduous (Acer pseudoplatanus, Fagus sylvatica, Tilia cordata) and coniferous (Abies alba) trees was comparatively determined by studying the photosynthetic rates via CO(2) measurements and also by imaging the Chl fluorescence decrease ratio (R(Fd)), which is an in vivo indicator of the net CO(2) assimilation rates. The thicker sun leaves and needles in all tree species were characterized by a lower specific leaf area, lower water content, higher total chlorophyll (Chl) a+b and total carotenoid (Cars) content per leaf area unit, as well as higher values for the ratio Chl a/b compared to the much thinner shade leaves and needles that possess a higher Chl a+b and Cars content on a dry matter basis and higher values for the weight ratio Chls/Cars. Sun leaves and needles exhibited higher rates of maximum net photosynthetic CO(2) assimilation (P(Nmax)) measured at saturating irradiance associated with higher maximum stomatal conductance for water vapor efflux. The differences in photosynthetic activity between sun and shade leaves and needles could also be sensed via imaging the Chl fluorescence decrease ratio R(Fd), since it linearly correlated to the P(Nmax) rates at saturating irradiance. Chl fluorescence imaging not only provided the possibility to screen the differences in P(N) rates between sun and shade leaves, but in addition permitted detection and quantification of the large gradients in photosynthetic rates across the leaf area existing in sun and shade leaves.  相似文献   

5.
In this study, we have compared photosynthetic performance of barley leaves (Hordeum vulgare L.) grown under sun and shade light regimes during their entire growth period, under field conditions. Analyses were based on measurements of both slow and fast chlorophyll (Chl) a fluorescence kinetics, gas exchange, pigment composition; and of light incident on leaves during their growth. Both the shade and the sun barley leaves had similar Chl a/b and Chl/carotenoid ratios. The fluorescence induction analyses uncovered major functional differences between the sun and the shade leaves: lower connectivity among Photosystem II (PSII), decreased number of electron carriers, and limitations in electron transport between PSII and PSI in the shade leaves; but only low differences in the size of PSII antenna. We discuss the possible protective role of low connectivity between PSII units in shade leaves in keeping the excitation pressure at a lower, physiologically more acceptable level under high light conditions.  相似文献   

6.
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25–0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20–50 mg m?2) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m?2. The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.  相似文献   

7.
Two separate objectives were considered in this study. We examined (1) internal conductance to CO2 (gi) and photosynthetic limitations in sun and shade leaves of 60-year-old Fagus sylvatica, and (2) whether free-air ozone fumigation affects gi and photosynthetic limitations. gi and photosynthetic limitations were estimated in situ from simultaneous measurements of gas exchange and chlorophyll fluorescence on attached sun and shade leaves of F. sylvatica. Trees were exposed to ambient air (1× O3) and air with twice the ambient ozone concentration (2× O3) in a free-air ozone canopy fumigation system in southern Germany (Kranzberg Forest). gi varied between 0.12 and 0.24 mol m−2 s−1 and decreased CO2 concentrations from intercellular spaces (Ci) to chloroplastic (Cc) by approximately 55 μmol mol−1. The maximum rate of carboxylation (Vcmax) was 22–39% lower when calculated on a Ci basis compared with a Cc basis. gi was approximately twice as large in sun leaves compared to shade leaves. Relationships among net photosynthesis, stomatal conductance and gi were very similar in sun and shade leaves. This proportional scaling meant that neither Ci nor Cc varied between sun and shade leaves. Rates of net photosynthesis and stomatal conductance were about 25% lower in the 2× O3 treatment compared with 1× O3, while Vcmax was unaffected. There was no evidence that gi was affected by ozone.  相似文献   

8.
The differences in pigment levels and photosynthetic activity of green sun and shade leaves of ginkgo (Ginkgo biloba L.) and beech (Fagus sylvatica L.) are described. Sun leaves of both tree species possessed higher levels in chlorophylls (Chl) and carotenoids on a leaf area basis, higher values for the ratio Chl a/b and lower values for the ratio Chl/carotenoids (a+b)/(x+c) in comparison to shade leaves. The higher photosynthetic rates P(N) of sun leaves (ginkgo 5.4+/-0.9 and beech 8.5+/-2.1 micromol m(-2)s(-1)) were also reflected by higher values for the Chl fluorescence decrease ratios R(F)(d) 690 and R(F)(d) 735. In contrast, the shade leaves had lower P(N) rates (ginkgo 2.4+/-0.3 and beech 1.8+/-1.2 micromol m(-2)s(-1)). In both tree species the stomatal conductance G(s) was significantly higher in sun (range: 70-19 1 mmol m(-2)s(-1)) as compared to shade leaves (range: 5-55 mmol m(-2)s(-1)). In fact, at saturating light conditions there existed a close correlation between G(s) values and P(N) rates. Differences between sun and shade leaves also existed in several other Chl fluorescence ratios (F(v)/F(m), F(v)/F(o), and the stress adaptation index Ap). The results clearly demonstrate that the fan-shaped gymnosperm ginkgo leaves show the same high and low irradiance adaptation response as the angiosperm beech leaves.  相似文献   

9.
The thermo-sensitivity of two new pea (Pisum sativum L.) cultivars—Afila (mutant in the gene transforming leaves into mustaches) and Ranen (mutant for early ripening)—as compared to the control cultivar Pleven-4 to either low (4 °C, T4) or high temperature (38 °C, T38) was investigated by means of chlorophyll (Chl) fluorescence kinetics. The low temperature treatment decreased the photosynthetic activity, measured via a decline of the Chl fluorescence decrease ratios RFd690 and RFd735, and this was mainly due to a decline of the Chl fluorescence decrease parameter Fd and maximum Chl fluorescence Fm. In the new cv. Ranen the RFd ratios at first decreased and increased again after 24-h exposure to 4 °C, indicating its good acclimation ability to low temperature. The cold-induced changes in the photosynthetic performance of all cultivars were reversed after transferring plants back to 23 °C for 48 h. In the Chl and carotenoid (Car) contents no or little changes occurred during the T4 treatment, except for a slight but clear increase of the ratio Chl a/b and a decrease in the ratio Chl/Car. In contrast to this, the T38 treatment for 72 h decreased the RFd ratios more strongly than the T4 exposure did. In fact, an irreversible injury of the photosynthetic apparatus was caused in the control pea cv. Pleven-4 by a 48-h T38 exposure and for the new cv. Afila after a 72-h T38 exposure. In contrast, the cv. Ranen was less and little sensitive to the T38 exposure. In the heat-sensitive cvs. Pleven-4 and Afila, the decrease in RFd values at T38 was associated with a strong decline of the Chl a+b and total Car contents. The Chl a+b decline could also be followed via an increase of the Chl fluorescence ratio F690/F735. Parallel to this, a strong decline of Chl a/b from ca. 3.0 (range 2.85–3.15) to ca. 1.9 (range 1.85–1.95) occurred indicating a preferential decline of the Chl a-pigment proteins but not of the Chl a/b-pigment protein LHC2. In the relatively heat-tolerant cv. Ranen, however, the ratio Chl a/b declined only partially. After the T4 treatment the stress adaptation index Ap was higher in cv. Ranen than in controls and reached in heat-treated Ranen plants almost the starting value indicating a cold and heat stress hardening of the treated plants. The Chl fluorescence parameters and pigment contents were influenced by T38 and T4 treatments in various ways indicating that the mechanisms of low and high temperature injury of the photosynthetic apparatus are different. The new cv. Ranen exhibited a cross tolerance showing a fairly good acclimation ability to both T4 and T38, hence it is a very suitable plant for outdoor growth and for clarification of the acclimation mechanisms to unfavourable temperatures.  相似文献   

10.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   

11.
Barták  M.  Raschi  A.  Tognetti  R. 《Photosynthetica》1999,37(1):1-16
Photosynthetic parameters were studied in Arbutus unedo L. trees growing at either ambient (AC) or elevated EC (mean 465 μmol mol-1) CO2 concentration near a natural CO2 vent in Orciatico, Italy Diurnal courses of net photosynthetic rate (P N), ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), and quantum yield of electron transport through photosystem 2 (Φ2) were measured on sun and shade leaves. The contents of N, C, Ca, K, P, and chlorophyll (Chl) and specific leaf area (SLA) in these leaf categories were also determined. A morning peak and midday depression of P N were found for both AC and EC sun leaves. Long-term EC caused little or no down-acclimation of P N in sum leaves. The estimate of total daily CO2 uptake was lower in AC leaves than in EC leaves. In shade leaves, it reached up to 70 % of the value of sun leaves. The Fv/Fm ratio showed decreasing trend in the morning, reached a minimum at midday (90 % of dawn value), and then increased in the afternoon. The EC had no effect on Fv/Fm either in sun or shade leaves. Plants grown near the CO2 spring had lower Chl content, higher SLA, and higher Ca and K contents than plants grown under AC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings.
  1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves.
  2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively.
  3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves.
  4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains.
  5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves.
  6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light.
  7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
  相似文献   

13.
The productivity and biomass parameters of the symbiotic anemone Aiptasia pulchella (Carlgren, 1943) from a shaded mangrove lagoon (maximum summer irradiance of 100 μE m−2 · s−1) and a sunlit reef flat (maximum summer irradiance of 1400 μE · m−2 · s−1) were examined in Hawaii. Light-shade adaptation was evident in the summer populations (1981) but not observed during the fall (1982). In the summer, zooxanthellae from the lagoon A. pulchella (shade anemones) contained 2.97 pg Chl a cell −1 and those from the reef flat (sun anemones) contained 1.70 pg Chl a · cell−1; but Chl a : c2 ratios were 2.5 in zooxanthellae from both shade and sun anemones. During the fall, there were no significant differences in Chl a and c2 of zooxanthellae (2.25 pg Chl a · cell−1) in shade and sun anemones, but Chl a : c2 ratios averaged 3.9. During both seasons, shade anemones were larger and contained higher densities of zooxanthellae than sun anemones. In addition to differences between shade and sun habitats, there was localized photoadaptation of zooxanthellae within individual anemones due to microhabitat variations in ambient irradiance. Growth rates of zooxanthellae in A. pulchella differed in shade and sun anemones. Specific growth rates for zooxanthellae in situ were the same for shade populations in both summer and fall (0.016 day−1). However, zooxanthellae in sun anemones grew four times faster in the fall (0.033 day−1) than during the summer (0.008 day−1). These results suggest that growth of zooxanthellae in these anemones was independent of ambient irradiance. Photosynthesis-irradiance (P-I) responses of shade and sun anemones during the summer showed that shade anemones had greater photosynthetic efficiencies (α) but lower photosynthetic capacities (Pmax) than sun anemones. Dark-respiration rates of sun anemones were twice those obtained with shade anemones. In the fall, these populations of anemones did not exhibit P-I responses characteristic of light-shade adaptation. Both α and Pmax of shade and sun anemones were higher in the fall, indicating that zooxanthellae in A. pulchella adapted to seasonal reduction in irradiance.  相似文献   

14.
The effects of changes in growth temperature on photosynthesis and carotenoid composition were examined in Zea mays L. leaves of different age and different developmental history. The plants were first grown at sub-optimal temperature (14°C) until the full development of the third leaf. At that time, the mature third leaf and the immature fourth leaf had a low chlorophyll (Chl) content, a low Chl a/b ratio, a high carotenoid/Chl a+b ratio, a high xanthophyll/β-carotene ratio, and about 80% of the xanthophyll cycle pool (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was in the form of zeaxanthin and antheraxanthin. When the temperature was increased from 14°C to 24°C for three days, increased Chl synthesis, accompanied by an increase in the Chl a/b ratio, took place. The ratios of lutein, neoxanthin, and V+A+Z to Chl a+b decreased markedly, whereas no significant changes appeared in the β-carotene/Chl a+b ratio. Furthermore, there was a sharp decrease in the xanthophyll/β-carotene ratio and most of zeaxanthin was converted to violaxanthin in the xanthophyll cycle. The third leaf and the tip segment of the fourth leaf, both expanded at 14°C, showed little difference in their pigment contents. However, the rate of CO2 assimilation of the tip segment of the fourth leaf was nearly twice that of the third leaf on the third day at 24°C, while the photosynthetic activity was similar in both leaves before the transfer to 24°C. During the warm period at 24°C, new leaf tissue (basal segment of the fourth leaf and part of a fifth leaf) was formed. On the third day at 24°C, the pigment content of 24°C-grown leaf tissue did not differ much from that of 14°C-grown leaf tissue with the exception that the total carotenoid content was lower in the former as compared to the latter, mainly because of a lower V+A+Z content. The rate of CO2 assimilation of 24°C-grown leaf tissue was comparable to that of the tip segment of the fourth leaf. Regardless of which leaf tissue is considered, reducing the temperature from 24°C to 14°C for 5 days slightly affected the pigment content, but violaxanthin was largely converted to zeaxanthin and antheraxanthin in the xanthophyll cycle. The results indicate that compared to old leaf tissue of mature leaves, physiologically younger leaf tissue of immature leaves is much more able to recover from depressions in the photosynthetic activity induced by growth at sub-optimal temperature when the plants experience optimal growth temperatures, but that factors other than the pigment content must determine this capability.  相似文献   

15.
Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non‐diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1–A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 μ mol mol ? 1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ‘peak’ of diurnal assimilation was 70% greater than that obtained before the ‘peak’, but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II ( Δ F/Fm ′ ) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ‘peak’. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 μ mol m ? 2 s ? 1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ‘peak’, but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non‐photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration.  相似文献   

16.
Changes in various components of photosynthetic apparatus during the 4 d dark incubation at 25°C of detached control and ultraviolet-B (UV-B) treatedVigna unguiculata L. leaves were examined. The photosynthetic apparatus was more degraded in younger control seedlings and for a longer time UV-B treated seedlings than in the older or for a shorter time UV-B treated seedlings. This was shown by determining the losses in chlorophyll (Chl) and protein contents, variable fluorescence yield, photosystem (PS) 2, PS1 and ribulose-1,5-bisphosphate carboxylase (RuBPC) activities, and photosynthetic14CO2 fixation. In contrast, the Car/Chl ratio increased during the dark incubation due to less expressed degradation of Car.  相似文献   

17.
Contribution of intercellular reflectance to photosynthesis in shade leaves   总被引:2,自引:1,他引:2  
The potential contribution of intercellular light reflectance to photosynthesis was investigated by infiltrating shade leaves with mineral oil. Infiltration of leaves of Hydrophyllum canadense and Asarum canadense with mineral oil decreased adaxial leaf reflectance but increased transmittance. As a result of the large increase in transmittance, infiltration caused a decrease in absorptance of 25% and 30% at 550 and 750 nm, respectively. Thus, intercellular reflectance increased absorptance in these species by this amount. In a comparison of sun and shade leaves of Acer saccharum and Parthenocissus quinquefolia, oil infiltration decreased absorptance more in shade than in sun leaves. This difference suggests that the higher proportion of spongy mesophyll in shade leaves may increase internal light scattering and thus absorptance. The importance of the spongy mesophyll in increasing internal reflectance was also evident in comparisons of the optics of Populus leaves and in the fluorescence yield of oil-infiltrated leaves of several sun and shade species. Oil infiltration decreased the quantum yield of fluorescence (Fo) by 39–52% for shade leaves but only 21–25% for sun leaves. We conclude that the greater proportion of spongy parenchyma in shade leaves increased intercellular light scattering and thus absorptance. Direct measurements with fibre-optic light probes of the distribution of light inside leaves of Hydrophyllum canadense confirmed that oil infiltration decreased the amount of back-scattered light and that most of the light scattering for this species occurred from the middle of the palisade layer to the middle of the spongy mesophyll. We were not, however, able to assess the potential contribution of reflectance from the internal abaxial epidermis to total internal light scattering in these experiments. Using a mathematical model to compare the response of net photosynthesis (O2, flux) to incident irradiance for control leaves of H. canadense and theoretical leaves with no intercellular reflectance, we calculated that intercellular reflectance caused a 1.97-fold increase in photosynthesis at 20 μmol m?2s?1 (incident photon flux density). This enhancement of absorption and photosynthesis by inter-cellular reflectance, without additional production and maintenance of photosynthetic pigments, may maintain shade leaves above the photosynthetic light compensation point between sunflecks and maintain the light induction state during protracted periods of low diffuse light.  相似文献   

18.
The current study compares responses to open field and shade enclosure condition (plastic shading nets were used to imitate a natural shading rate) to test the possible benefit of shading in terms of physiological and growth characteristics in Ginkgo biloba L. during the reproductive stage in summer. Compared with the net shade treated plants (NS-plants), the open-field plants (O-plants) contained lower chlorophyll (Chl) a + b content and Chl a/b ratio, and exhibited a decreased ratio of Chl/Car. Results showed that the chlorophyll fluorescence characteristics including maximum PSII photochemical efficiency (F v /F m ), potential electron transport per excited leaf cross-section (ET0/CS0), potential electron transport per PSII reaction center (ET0/RC), dissipation per excited leaf cross-section (DI0/CS0), dissipation per PSII reaction center (DI0/RC), and overall performance index of PSII photochemistry on absorbtion basis (PIABS) were altered by the net shade treatment. It was observed that the grana were illegible and difficult to distinguish by transmission electron microscopy, especially, in the cells of O-plants in which phenols were observed in the vacuole. The phenomenon of photoinhibition induced by excessive irradiance was confirmed by the abnormally high levels of the reactive oxygen species. Moreover, antioxidant enzymes activities were induced by high irradiance in the ginkgo leaves. In addition, significant differences were observed in the fresh weight and dry weight of leaves and seeds. Comparison of the variation of underlying physiological and biochemical mechanisms suggested that there was a better efficiency of ginkgo plants under artificial net shade conditions. Therefore, ginkgo plant would be best grown at 30–35 % of natural irradiance in summer months to be more profitably harvested and then meet the increasing demand of leaves and seeds.  相似文献   

19.
Leaf reddening in overwintering evergreens largely restricts their application in landscapes and is generally triggered in response to excess light. To explore how leaves respond to excess light and examine the potential relevance of leaf reddening in this process, a comparative field study was conducted on the sun leaves (SUL), shade leaves (SHL) and three levels of artificially shaded sun leaves (SSUL) of Buxus microphylla ‘Wintergreen’. The seasonal changes in leaf colorations, chlorophyll (Chl) and carotenoid contents, leaf absorbance and chlorophyll fluorescence characteristics were investigated. The results showed that SUL upregulated Chl a/b with increased reductions in Chl b compared with Chl a, accumulated red pigments in the upper palisade mesophyll with reduced absorption in blue and red light but increased absorption in green light, and additionally, significantly downregulated photochemical activities through the sustained enhancement of energy dissipation in PSII antenna (ΦD) from fall to midwinter. In the SSUL, as the light intensity decreased, all of the above processes were mitigated except that the SSUL maintained constant absorptions in blue light region and whose levels were similar to those of the SUL and SHL. In contrast, the SHL maintained relatively high levels of Chl a and Chl b, remained completely green and showed regulated ΦD and ΦE (energy dissipation in PSII reaction centers) to maintain relatively high photochemical activity in the winter. We conclude that the sun leaves downregulate Chl contents to reduce the light absorption and simultaneously enhance sustained ΦD to dissipate most of the light energy, whereas shade leaves maintain relatively high Chl contents and demonstrate regulated proportions of ΦD and ΦE to match the extent to which the absorbed light can be utilized through photochemical reactions. The accumulated red pigments in sun phenotypes may provide a shading effect on Chls by directing energy to non-photosynthetic reaction centers in the blue light region where the absorption is offset by the reduced Chls.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号