首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.  相似文献   

2.
The Fad12 mutant of Synechocystis sp. PCC 6803 has a defect in the desA gene for Δ12 acyl-lipid desaturase. We identified a change in the nucleotide sequence of the structural gene for the desaturase, in which a leucine codon has been converted to a stop codon. Western blot analysis revealed that the Δ12 acyl-lipid desaturase was localized in both plasma membranes and thylakoid membranes of wild-type cells but was absent from both types of membrane in Fad12 cells. These findings suggest that the desaturation of fatty acids takes place in both types of membrane in Synechocystis sp. PCC 6803. The mutation in the Δ12 desaturase did not affect the lipid composition of thylakoid and plasma membranes, but it changed the fatty acid composition of lipids in similar ways in both types of membrane.  相似文献   

3.
Cyanobacterial thylakoid membranes are known to host photosynthetic and respiratory complexes. This hampers a straight forward interpretation of the highly dynamic fluorescence originating from photosynthetic units. The present study focuses on dark-to-light transitions in whole cells of a PSI-deficient mutant of the cyanobacterium Synechocystis sp. PCC 6803. The time-dependent cellular fluorescence spectrum has been measured, while having previously exposed the cells to different conditions that affect respiratory activity. The analysis method used allows the detected signal to be decomposed in a few components that are then assigned to functional emitting species. Additionally, we have worked out a minimal mathematical model consisting of sensible postulated species to interpret the recorded data. We conclude that the following two functional complexes play a major role: a phycobilisome antenna complex coupled to a PSII dimer with either two or no closed reaction centers. Crucially, we present evidence for an additional species capable of strongly quenching fluorescence, whose formation requires the presence of oxygen.  相似文献   

4.
In Synechocystis sp. PCC 6803, the loop domain (aa 1–70) of the phycobilisome core-membrane linker, LCM, was found to interact with the glycosyl transferase homolog, Sll1466. Growth of a Sll1466 knock-out mutant was slightly faster in low light, but strongly inhibited in high light; the phenotype is discussed in relation to the regulation of light energy transfer to photosystem II. At the molecular level, the mutant shows the following changes compared to the wild type: (1) a smaller size and higher mobility of phycobilisomes on the thylakoid membrane, and (2) a changed lipid composition of the thylakoid membrane, especially decreased amounts of digalactosyl diacylglycerol. These results indicate a profound regulatory role for Sll1466 in regulating photosynthetic energy transfer.  相似文献   

5.
Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a typical thylakoid membrane system was observed within 24 hours after an initial lag phase of 6 to 8 hours. Furthermore, activation of photosystem II complexes and restoration of a functional photosynthetic electron transport chain appears to be linked to the biogenesis of organized thylakoid membrane pairs.Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. The intracellular thylakoid membranes of cyanobacteria harbor the protein complexes of the photosynthetic electron transport chain (Nowaczyk et al., 2010; Bernat and Rögner, 2011). The photosynthetic electron transport chain is composed of three large membrane protein complexes, i.e. PSII, the cytochrome b6f complex, and PSI. Excitation energy trapping by PSII results in water splitting at the PSII donor side within the thylakoid lumen and transport of electrons to the primary and secondary electron accepting quinone molecules QA and QB, respectively. Following double reduction and protonation, QB is released from PSII into the plastoquinone (PQ) pool and delivers electrons to the cytochrome b6f complex. The cytochrome b6f complex transfers the electrons to the soluble electron carrier plastocyanin or cytochrome c6, which subsequently reduces PSI. For efficient light harvesting, cyanobacteria contain soluble light-harvesting antenna proteins, the phycobilisomes (PBSs), which transfer light energy to the photosynthetic reaction centers. In cyanobacteria, the PSI-to-PSII ratio is controlled by light and by the redox state of the PQ/PQH2-pool (Fujita et al., 1987), and under high-light growth conditions, typically less PSI is present in cyanobacterial thylakoid membranes compared with low-light conditions (Fujita et al., 1994).Thylakoid membranes and photosynthetic electron transport are essential for phototrophic growth of cyanobacterial cells. Despite their importance for survival of cyanobacteria, biogenesis of thylakoid membranes is yet not well understood. It still is an ongoing debate whether the internal membrane systems (cytoplasmic and thylakoid membranes) are connected in cyanobacteria or not, and thus whether thylakoids represent a completely separated membrane entity (Liberton et al., 2006; van de Meene et al., 2006, 2012; Schneider et al., 2007). Up to now, only few proteins have been described to be involved in thylakoid membrane biogenesis. Among them the Vipp1 protein (vesicle inducing protein in plastids1) seems to play an important role in thylakoid membrane biogenesis, as in chloroplasts of Arabidopsis (Arabidopsis thaliana) and in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), depletion of Vipp1 results in a reduced thylakoid membrane system (Kroll et al., 2001; Westphal et al., 2001). While the exact physiological function of the protein is not yet known (Vothknecht et al., 2012), depletion of Vipp1 in Synechocystis not only results in reduced thylakoid membrane formation, but also affects the activity and structure of components of the photosynthetic electron transport chain (Fuhrmann et al., 2009; Gao and Xu, 2009).As complexes of the respiratory electron transport chain are also localized in cyanobacterial thylakoids, the photosynthetic and respiratory electron transport pathways are highly interconnected and both contribute to formation of an electrochemical gradient across the thylakoid membrane and energy production. Due to this, Synechocystis is able to grow completely heterotrophically under light-activated photoheterotrophic growth (LAHG) conditions in the presence of high Glc concentrations (Anderson and McIntosh, 1991; Smart et al., 1991).In this study, we have used dark-grown Synechocystis cells to investigate “greening” of Synechocystis cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions. Following transfer of Synechocystis cells into the light, complete restoration of a typical thylakoid membrane system was observed within 24 h. While dark-grown Synechocystis cells contained only rudimentary thylakoid membranes, they still contained a high concentration of PBSs, active PSI as well as inactive PSII complexes. Activation of PSII complexes appears to be linked to the biogenesis of organized thylakoid membrane pairs.  相似文献   

6.
Exposure of cyanobacterial or red algal cells to high light has been proposed to lead to excitonic decoupling of the phycobilisome antennae (PBSs) from the reaction centers. Here we show that excitonic decoupling of PBSs of Synechocystis sp. PCC 6803 is induced by strong light at wavelengths that excite either phycobilin or chlorophyll pigments. We further show that decoupling is generally followed by disassembly of the antenna complexes and/or their detachment from the thylakoid membrane. Based on a previously proposed mechanism, we suggest that local heat transients generated in the PBSs by non-radiative energy dissipation lead to alterations in thermo-labile elements, likely in certain rod and core linker polypeptides. These alterations disrupt the transfer of excitation energy within and from the PBSs and destabilize the antenna complexes and/or promote their dissociation from the reaction centers and from the thylakoid membranes. Possible implications of the aforementioned alterations to adaptation of cyanobacteria to light and other environmental stresses are discussed.  相似文献   

7.
The phycobilisome (PBS) is a giant highly-structured pigment-protein antenna of cyanobacteria and red algae. PBS is composed of the phycobiliproteins and several linker polypeptides. The large core-membrane linker protein (LCM or ApcE) influences many features and functions of PBS and consists of several domains including the chromophorylated PB-domain. Being homologous to the phycobiliprotein α-subunits this domain includes a so-called PB-loop insertion whose functions are still unknown. We have created the photoautotrophic mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with lacking PB-loop. Using various spectral techniques we have demonstrated that this mutation does not destroy the PBS integrity and the internal PBS excitation energy transfer pathways. At the same time, the deletion of the PB-loop leads to the decrease of connectivity between the PBS and thylakoid membrane and to the compensatory increase of the relative photosystem II content. Mutation provokes the violation of the thylakoid membranes arrangement, the inability to perform state transitions, and diminishing of the OCP-dependent non-photochemical PBS quenching. In essence, even such a minute mutation of the PBS polypeptide component, like the PB-loop deletion, becomes important for the concerted function of the photosynthetic apparatus.  相似文献   

8.
Ogawa T 《Plant physiology》1992,99(4):1604-1608
The ictA gene, renamed ndhL in this paper, essential to inorganic carbon transport of Synechocystis PCC6803, was expressed in Eschericia coli as a fusion protein with glutathione S-transferase. An antibody was raised against this fusion protein. Western analysis of the thylakoid membrane of wild-type (WT) Synechocystis revealed that a protein with an apparent molecular mass of 6.7 kilodaltons cross-reacted with this antibody. No immunoreactive protein was present in the thylakoid membranes of the Synechocystis mutants, RKb and M9, which have defects in the ictA/ndhL gene, or in the cytoplasmic membranes of the WT and mutant cells. Thus, the protein reacted with the antibody is the ictA gene product (IctA) and is localized in the thylakoid membrane of WT cells. IctA was absent in the thylakoid membranes of the M55 mutant, in which the ndhB gene is inactivated, and was poorly immunostained in the membranes of the mutants (M-ndhC and M-ndhK) constructed by inactivating the ndhC and ndhK genes of WT Synechocystis, respectively. The carbon dioxide uptake activity was nearly zero in M-ndhK and was about 40% of the activity of WT cells in M-ndhC. The RKb, M-ndhC, and M-ndhK mutants were unable to grow or grew very slowly under photoheterotrophic conditions. These results indicated that NADH dehydrogenase is essential to inorganic carbon transport and photoheterotrophic growth of Synechocystis and that IctA is one of the subunits of this enzyme.  相似文献   

9.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

10.
Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS.  相似文献   

11.
Daping Yang  Chen Min 《BBA》2010,1797(2):204-211
The gene encoding a chlorophyll d-binding light-harvesting protein, pcbA from Acaryochloris marina (now called as accessory Chlorophyll Binding Protein CBPII) marked with a His-tag was transformed into the genome of Synechocystis PCC6803. Protein gel electrophoresis and western blotting confirmed that this foreign chlorophyll d-binding protein CBPII was expressed and integrated into the thylakoid membrane and bound with chlorophyll a, the only type of chlorophyll present in Synechocystis PCC 6803. Native electrophoresis suggested that CBPII interacts with photosystem II of Synechocystis PCC 6803. Surprisingly, spectral analyses showed that the phycobiliproteins were suppressed in the transformed Synechocystis pcbA+, with a lower ratio of phycobilins to chlorophyll a. These results suggest that there are competitive interactions between the external antenna system of phycobiliproteins and the integral antenna system of chlorophyll-bound protein complexes.  相似文献   

12.
BackgroundGlycerolipids are important components of membranes in cyanobacteria that possess vital roles in biological processes. The effect of nitrogen deprivation on membrane lipids of Synechocystis sp. PCC 6803 lipids has not been previously examined.MethodsEasy ambient sonic-spray ionization mass spectrometry (EASI-MS) was used for the analysis of Synechocystis 6803 cells with minimal sample preparation, providing rapid qualitative and relative quantitative information on the lipid content of their membranes.ResultsChanges in the degree of unsaturation of membrane lipids were observed for cells grown under normal conditions during different growth phases. This physiological remodeling was disrupted when nitrogen was withdrawn from the cultivation medium. However, this disruption was reversed when the cells were resuspended in normal N-containing medium. Mass spectrometric data were supported by examination of cells by electron microscopy.ConclusionsEASI-MS was applied for the first time in the analysis of Synechocystis 6803 cells grown under nitrogen deprived conditions and was found to be a powerful technique operating in a high-throughput manner for the rapid lipid profiling of cells at different growth stages and under different growth conditions.General significanceThe effect of nitrogen deprivation on membrane lipids of Synechocystis 6803 cells was revealed using an ambient ionization technique which enabled high-throughput cell analysis with minimal sample preparation. The results obtained have the potential to be used in future studies to decipher the involvement of enzymes in the observed lipid profile changes.  相似文献   

13.
Norihiro Sato  Kunihiro Suda 《BBA》2004,1658(3):235-243
Phosphatidylglycerol (PG) ubiquitous in thylakoid membranes of photosynthetic organisms was previously shown to contribute to accumulation of chlorophyll through analysis of the cdsA mutant of a cyanobacterium Synechocystis sp. PCC6803 defective in PG synthesis (SNC1). Here, we characterized effects of manipulation of the PG content in thylakoid membranes of Synechocystis sp. PCC6803 on the photosystem complexes to specify roles of PG in biogenesis of thylakoid membranes. SNC1 cells with PG deprivation in vivo, together with the chlorophyll decrease, exhibited a decline not in PSII, but in PSI, at the complex level as well as the subunit levels. On the other hand, the decrease in the PSI complex was accounted for by a remarkable decrease in the PSI trimer with an increase in the monomer. These symptoms of SNC1 cells were complemented in vivo by supplementation of PG. Besides, a reduction in the PG content of thylakoid membranes isolated from the wild type in vitro on treatment with phospholipase A2 (PLA2), similar to the PG-deprivation in SNC1 in vivo, brought about a decrease in the trimer population of PSI with accumulation of the monomer. These results demonstrated that PG contributes to the synthesis and/or stability of the PSI complex for maintenance of the cellular content of chlorophyll, and also to construction of the PSI trimer from the monomer at least through stabilization of the trimerized conformation.  相似文献   

14.
Truncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains of Synechocystis sp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO(2) conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.  相似文献   

15.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

16.
To advance our knowledge of the model cyanobacterium Synechocystis sp. PCC 6803 we investigated the three-dimensional organization of the cytoplasm using standard transmission electron microscopy and electron tomography. Electron tomography allows a resolution of ~5 nm in all three dimensions, superior to the resolution of most traditional electron microscopy, which is often limited in part by the thickness of the section (70 nm). The thylakoid membrane pairs formed layered sheets that followed the periphery of the cell and converged at various sites near the cytoplasmic membrane. At some of these sites, the margins of thylakoid membranes associated closely along the external surface of rod-like structures termed thylakoid centers, which sometimes traversed nearly the entire periphery of the cell. The thylakoid membranes surrounded the central cytoplasm that contained inclusions such as ribosomes and carboxysomes. Lipid bodies were dispersed throughout the peripheral cytoplasm and often juxtaposed with cytoplasmic and thylakoid membranes suggesting involvement in thylakoid maintenance or biogenesis. Ribosomes were numerous and mainly located throughout the central cytoplasm with some associated with thylakoid and cytoplasmic membranes. Some ribosomes were attached along internal unit-membrane-like sheets located in the central cytoplasm and appeared to be continuous with existing thylakoid membranes. These results present a detailed analysis of the structure of Synechocystis sp. PCC 6803 using high-resolution bioimaging techniques and will allow future evaluation and comparison with gene-deletion mutants.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.  相似文献   

18.
To study the function of soluble NAD(P)H:quinone oxidoreductase of the cyanobacterium Synechocystis sp. PCC 6803 encoded by drgA gene, recombinant DrgA protein carrying 12 histidine residues on the C-terminal end was expressed in Escherichia coli and purified. Recombinant DrgA is a flavoprotein that exhibits quinone reductase and nitroreductase activities with NAD(P)H as the electron donor. Using EPR spectroscopy, it was demonstrated that addition of recombinant DrgA protein and NADPH to DCMU-treated isolated thylakoid membranes of the cyanobacterium increased the dark rereduction rate of the photosystem I reaction center (P700+). Thus, DrgA can participate in electron transfer from NADPH to the electron transport chain of the Synechocystis sp. PCC 6803 thylakoid membrane.  相似文献   

19.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

20.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号