首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplasts and mitochondria are traditionally considered to be autonomous organelles but they are not as independent as they were once thought to be. Mitochondrial metabolism, particularly the bioenergetic reactions of oxidative electron transport and phosphorylation, continue to be active in the light and are essential for sustaining photosynthetic carbon assimilation. The marked and mutually beneficial interaction between mitochondria and chloroplasts is intriguing. The key compartments within plant cells, including not only mitochondria and chloroplasts but also the peroxisomes and cytosol, appear to be in a delicate metabolic equilibrium. Disturbance of any of these compartments perturbs the metabolism of whole cell. Nevertheless, mitochondria appear to be the key players because they function during both photorespiration and dark respiration.  相似文献   

2.
The review emphasizes the essentiality of mitochondrial oxidative metabolism for photosynthetic carbon assimilation. Photosynthetic activity in chloroplasts and oxidative metabolism in mitochondria interact with each other and stimulate their activities. During light, the partially modified TCA cycle supplies oxoglutarate to cytosol and chloroplasts. The marked stimulation of O2 uptake after few minutes of photosynthetic activity, termed as light enhanced dark respiration (LEDR), is now a well-known phenomenon. Both the cytochrome and alternative pathways of mitochondrial electron transport are important in such interactions. The function of chloroplast is optimized by the complementary nature of mitochondrial metabolism in multiple ways: facilitation of export of excess reduced equivalents from chloroplasts, shortening of photosynthetic induction, maintenance of photorespiratory activity, and supply of ATP for sucrose biosynthesis as well as other cytosolic needs. Further, the mitochondrial oxidative electron transport and phosphorylation also protects chloroplasts against photoinhibition. Besides mitochondrial respiration, reducing equivalents (and ATP) are used for other metabolic phenomena, such as sulfur or nitrogen metabolism and photorespiration. These reactions often involve peroxisomes and cytosol. The beneficial interaction between chloroplasts and mitochondria therefore extends invariably to also peroxisomes and cytosol. While the interorganelle exchange of metabolites is the known basis of such interaction, further experiments are warranted to identify other biochemical signals between them. The uses of techniques such as on-line mass spectrometric measurement, novel mutants/transgenics, and variability in metabolism by growth conditions hold a high promise to help the plant biologist to understand this  相似文献   

3.
Background information. Cadmium (Cd) is a highly toxic heavy metal that causes changes in plant metabolism through inhibiting photosynthesis and respiration. The effects of Cd on the morphology and function of the chloroplast and mitochondria, as well as on the production and localization of ROS (reactive oxygen species), were studied at the single‐cell level in Arabidopsis. Results. The present study showed that the morphology of chloroplasts changed after Cd treatment, and the photochemical efficiency dramatically declined prior to obvious morphological distortion in the chloroplasts. A quick burst of ROS was detected after Cd treatment. The ROS appeared first in the mitochondria and subsequently in the chloroplast. Simultaneously, the mitochondria clumped irregularly around the chloroplasts or aggregated in the cytoplasm, and the movement of mitochondria was concomitantly blocked. Furthermore, the production of ROS was decreased after pre‐treatment with ascorbic acid or catalase, which prevented inhibition of photosynthesis, organelle changes and subsequent protoplast death. Our results suggest that the distribution and mobility of mitochondria, the morphology of chloroplasts and the accumulation of ROS play important roles in Cd‐induced cell death. The results are in good agreement with previous reports of many types of apoptotic‐like cell death. Conclusion. The changes in the distribution and mobility of mitochondria, and morphology of chloroplasts, as well as the accumulation of ROS, play important roles in Cd‐induced cell death.  相似文献   

4.
Alternative oxidase (AOX), the unique terminal oxidase in plant mitochondria, catalyzes the energy-wasteful cyanide (CN)-resistant respiration. Although it has been suggested that AOX might prevent chloroplast over-reduction through the efficient dissipation of excess reducing equivalents, direct evidence for this in the physiological context has been lacking. In this study, we examined the mitochondrial respiratory properties, especially AOX, connected to the accumulation of reducing equivalents in the chloroplasts and the activities of enzymes needed to transport the reducing equivalents. We used Arabidopsis thaliana mutants defective in cyclic electron flow around PSI, in which the reducing equivalents accumulate in the chloroplast stroma due to an unbalanced ATP/NADPH production ratio. These mutants showed higher activities of the enzymes needed to transport the reducing equivalents even in low-light growth conditions. The amounts of AOX protein and CN-resistant respiration in the mutants were also higher than those in the wild type. After high-light treatment, AOX, even in the wild type, was preferentially up-regulated concomitant with the accumulation of reducing equivalents in the chloroplasts and an increase in the activities of enzymes needed to transport reducing equivalents. These results indicate that AOX can dissipate the excess reducing equivalents, which are transported from the chloroplasts, and serve in efficient photosynthesis.  相似文献   

5.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes energy wasteful cyanide (CN)-resistant respiration and plays a role in optimizing photosynthesis. Recent studies from our group indicated that AOX plays a crucial role in chloroplast protection under extreme environments, such as high light (HL). Genetic data suggest that AOX is upregulated by light that was mediated by photoreceptors (phytochromes, phototropins and cryptochromes), and it also might have a particular role in relieving the overreduction of chloroplasts. Physiological analyses further suggest that AOX is essential for the dark-tolight transition, especially in the course of de-etiolation. In this mini-review, we highlight recent progress in understanding the beneficial interaction between photosynthesis and mitochondria metabolism and discuss the possible role and mechanism of AOX in dissipation of excess reduced equivalents for chloroplasts under high light condition.Key words: alternative oxidase (AOX), excess light, NAD(P)H dehydrogenases (NDs), photoreceptors, reactive oxygen species (ROS)  相似文献   

6.
Increased ROS generation by the overload by metabolic substrates mitochondria paralleled by decrease of antioxidant activity are typical events found in metabolic syndrome and diabetes type 2. Metabolites of beta-carotene (BC) such as retinoic acid (RA), as well as low concentration of reactive oxygen species (ROS) modify the mitochondrial bioenergetic function. The aim of the study was to investigate the effect of beta-carotene on mitochondrial activity in human preadipocytes. BC used in concentrations, 10 or 30 μM, decreased mitochondrial membrane potential, inhibited mitochondrial respiration and decreased cellular ATP content. We conclude, that BC, the known antioxidant may decrease oxidative phosphorylation capacity of mitochondria.  相似文献   

7.
Malate valves to balance cellular energy supply   总被引:19,自引:0,他引:19  
In green parts of the plant, during illumination ATP and NAD(P)H act as energy sources that are generated mainly in photosynthesis and respiration, whereas in darkness, glycolysis, respiration and the oxidative pentose-phosphate pathway (OPP) generate the required energy forms. In non-green parts, sugar oxidation in glycolysis, respiration and OPP are the only means of producing energy. For energy-consuming reactions, the delivery of NADPH, NADH, reduced ferredoxin and ATP has to take place at the required rates and in the specific compartments, since the pool sizes of these energy carriers are rather limited and, in general, they are not directly transported across biomembranes. Indirect transport of reducing equivalents can be achieved by malateoxaloacetate shuttles, involving malate dehydrogenase (MDH) for the interconversion. Isoenzymes of MDH are present in each cellular compartment. Chloroplasts contain the redox-controlled NADP-MDH that is only active in the light. In addition, a plastid NAD-MDH that is permanently active and is present in all plastid types has been found. Export of excess NAD(P)H through the malate valves will allow for the continued production of ATP (1) in photosynthesis, and (2) in oxidative phosphorylation. In the latter case, the coupled production of NADH is catalysed by the bispecific NAD(P)-GAPDH (GapAB) in chloroplasts that is active with NAD even in darkness, or by the specific plastid NAD-GAPDH (GapCp) in non-green tissues. When plants are subjected to conditions such as high light, high CO(2), NH(4) (+) nutrition, cold stress, which require changed activities of the enzymes of the malate valves, changed expression levels of the MDH isoforms can be observed. In nodules, the induction of a nodule-specific plastid NAD-MDH indicates the changed requirements for energy supply during N(2) fixation. Furthermore, the induction of glucose 6-phosphate dehydrogenase isoforms by ammonium and of ferredoxin and ferredoxin-NADP reductase by nitrate has been described. All these findings are in line with the assumption that a changed redox state caused by metabolic variability leads to the induction of enzymes involved in redox poise.  相似文献   

8.
Using the principle described by R McC Lilley, M Stitt, G Mader, HW Heldt (1982 Plant Physiol 70: 965-970), an apparatus for rapid fractionation of barley leaf (Hordeum vulgare) protoplasts by membrane filtration was built. From studies of ATP/ADP ratios, it is concluded that the quenching of metabolic reactions is very fast, making it possible to use the method for studies on metabolic interactions between different compartments in plant cells. The fractionation method was used to study the influence of photorespiration on ATP/ADP ratios in the chloroplasts, mitochondria, and cytosol of barley leaf protoplasts. The cytosolic ATP/ADP ratio was higher under photorespiratory conditions than under nonphotorespiratory conditions. Aminoacetonitrile, an inhibitor of the photorespiratory conversion of glycine to serine, had a very small effect on the ATP/ADP ratios in the different subcellular compartments during photosynthesis in nonphotorespiratory conditions (saturating CO2). In photorespiratory conditions (limiting CO2), on the other hand, aminoacetonitrile increased the ATP/ADP ratio in the chloroplasts and decreased the ATP/ADP ratios in the mitochondria and the cytosol. These results are consistent with the hypothesis, that during photorespiration glycine oxidation is coupled to oxidative phosphorylation to provide ATP to the cytosol.  相似文献   

9.
The purpose of this review in reanalysing the ATP:reductant balance in illuminated leaf cells is to stress that the photosynthesis in vivo does not involve CO2 fixation alone, but embraces other processes, chief among which is N assimilation. Prior to the demonstration of CO2 fixation and photophosphorylation by isolated chloroplasts, the mitochondria were thought likely to provide all the ATP required for CO2 fixation (discussed in Arnon et al., 1954). During the 1960s, the development of techniques for the isolation of chloroplasts able to fix CO2 at rates approaching those of the parent tissue induced a paradigm shift, leading to the establishment of a dominant (if not unanimous) view that chloroplasts in vivo must by themselves meet all their ATP requirements. More recent studies, however, indicate that the reality lies somewhere between these two extremes. The present work places emphasis on the integrated nature of photosynthesis and proposes that much of the respiratory ATP necessary for whole cell photosynthesis may be generated during the production of C skeletons for N assimilation. Rather than considering dissipative electron transport pathways as necessary to uncouple respiratory precursor synthesis from ATP production, the present analysis emphasizes the metabolic value of ATP produced during N-linked respiration, with cellular ATP supply being tailored to ATP demand.  相似文献   

10.
The compartmentation of cellular energy relations during dark-light and light-dark transitions was studied by means of a newly developed technique to fractionate oat (Avena sativa L., var. Arnold) mesophyll protoplasts. Using an improved microgradient system with hydrophobic and hydrophilic layers of increasing density, a pure plastid pellet (up to 90% of total chloroplasts) could be separated from an interphase of only slightly contaminated mitochondria (70 to 80% of total mitochondria), and a cytoplasmic supernatant could be obtained within 60 seconds. Appropriate controls indicate that, under the conditions employed, metabolic interconversions of adenylates can be kept to a minimum and, thus, be determined and corrected for. Cross contamination of the fractions, as well as liberation of organelles to the supernatant, was assessed by specific markers, and the metabolite levels recorded were corrected accordingly. Using this technique, we found that, during dark-light transition, the chloroplastic and cytosolic ATP exhibits a rapid increase, while the mitochondrial ATP level decreases. In all compartments, ADP levels mirror alterations of the ATP pool in the opposite way, at least to some extent. To compensate fully for the rise in ATP, chloroplastic and mitochondrial AMP levels change accordingly, indicating that, due to the more or less unchanged level of total adenylates, there is no net flux of adenylates between the compartments. In contrast to the organelles, no AMP could be detected within the cytosol. When the light is turned off, a decrease of ATP coincides between chloroplast stroma and the cytosol for only about 30 seconds. Under prolonged dark treatment, cytosolic ATP rises again, while stroma ATP levels exhibit a further decrease. After about 60 seconds of darkness, the cytosolic ATP level is back to its initial value. This obviously is due to the immediate rise in mitochondrial ATP upon darkening, which cumulates after about 60 seconds; then, caused by an ATP/ADP exchange with the cytosol, it levels off again at the state before changing the conditions, as soon as the cytosolic ATP is also back to its original level. All of these events are closely mirrored by the change in the ATP/ADP ratio and the energy charge within the compartments. While the values for chloroplasts exhibit considerable differences between dark and light, those calculated for mitochondria and the cytosol exhibit only transient changes. These are limited to about 60 seconds of undershoot or overshoot, with respect to the cytosol, and then return to nearly the levels observed before changing the conditions. Adenylate kinase was found to be exclusively associated with chloroplasts (90% of total activity level) and mitochondria. Isotonic liberation of vacuoles did not point toward a significant association of adenylates with this compartment.  相似文献   

11.
Current notions on respiration of photosynthesizing cells are reviewed. Over the past three decades, the modern methods based on isotope techniques and reverse and molecular genetics provided convincing evidence that mitochondrial respiration is functional in the light and contributes to the creation of optimal conditions for photosynthesis and for protection of cells from photodegradation. Novel data are presented on the substrates that are used for respiration in the light. Individual respiration steps are considered in the context of their possible role in photosynthesizing cells. The mechanisms and carriers mediating the export of reducing equivalents from chloroplasts for their subsequent oxidation in the mitochondrial electron-transport chain are discussed. The regulation of nonphosphorylating (unrelated to energy generation) electron transport pathways mediated by alternative oxidase and alternative type II NADPH-dehydrogenases, as well as the role of uncoupling proteins in plant mitochondria, are analyzed. These components were shown to play a significant role in NAD(P)H oxidation for maintaining the redox balance in mitochondria and whole green cells. A generalized scheme of biochemical interactions between organelles—chloroplasts, mitochondria, and peroxisomes—is presented. The directions for future research are outlined.  相似文献   

12.
13.
We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.  相似文献   

14.
Photosynthesis, respiration, and other processes produce reactive oxygen species (ROS) that can cause oxidative modifications to proteins, lipids, and DNA. The production of ROS increases under stress conditions, causing oxidative damage and impairment of normal metabolism. In this work, oxidative damage to various subcellular compartments (i.e. chloroplasts, mitochondria, and peroxisomes) was studied in two cultivars of wheat differing in ascorbic acid content, and growing under good irrigation or drought. In well-watered plants, mitochondria contained 9-28-fold higher concentrations of oxidatively modified proteins than chloroplasts or peroxisomes. In general, oxidative damage to proteins was more intense in the cultivar with the lower content of ascorbic acid, particularly in the chloroplast stroma. Water stress caused a marked increase in oxidative damage to proteins, particularly in mitochondria and peroxisomes. These results indicate that mitochondria are the main target for oxidative damage to proteins under well-irrigated and drought conditions.  相似文献   

15.
The mathematical model of the compartmentalized energy transfer system in cardiac myocytes presented includes mitochondrial synthesis of ATP by ATP synthase, phosphocreatine production in the coupled mitochondrial creatine kinase reaction, the myofibrillar and cytoplasmic creatine kinase reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional exchange of metabolites between different compartments. The model was used to calculate the changes in metabolite profiles during the cardiac cycle, metabolite and energy fluxes in different cellular compartments at high workload (corresponding to the rate of oxygen consumption of 46 mu atoms of O.(g wet mass)-1.min-1) under varying conditions of restricted ADP diffusion across mitochondrial outer membrane and creatine kinase isoenzyme "switchoff." In the complete system, restricted diffusion of ADP across the outer mitochondrial membrane stabilizes phosphocreatine production in cardiac mitochondria and increases the role of the phosphocreatine shuttle in energy transport and respiration regulation. Selective inhibition of myoplasmic or mitochondrial creatine kinase (modeling the experiments with transgenic animals) results in "takeover" of their function by another, active creatine kinase isoenzyme. This mathematical modeling also shows that assumption of the creatine kinase equilibrium in the cell may only be a very rough approximation to the reality at increased workload. The mathematical model developed can be used as a basis for further quantitative analyses of energy fluxes in the cell and their regulation, particularly by adding modules for adenylate kinase, the glycolytic system, and other reactions of energy metabolism of the cell.  相似文献   

16.
The effects of oligomycin on photosynthesis and respiration in relation to ATP production in chloroplasts and mitochondria were investigated in protoplasts isolated from the detached pea (Pisum sativum L cv. Iłowiecki.) and barley (Hordeum vulgare L. cv. Gunilla) leaves treated 5 mM Pb(NO3)2. The oligomycin (OM), an inhibitor of oxidative phosphorylation at 0.1 μM concentration caused the inhibition of photosynthesis rate in the protoplasts from both the control and the Pb-treated pea leaves. The respiration rate and ATP/ADP ratio in the protoplasts and the activity of ATPase in mitochondria, were also diminished in the control protoplasts. These effects were not observed in the protoplasts and mitochondria isolated from the Pb-treated leaves. Oligomycin, an inhibitor of photophosphorylation at 10 μM concentration decreased ATPase activity in chloroplasts from both the control and the Pb- treated leaves. Using the method of rapid fractionation of barley protoplasts it was shown that the ATP/ADP ratio in the mitochondria from Pb-treated leaves was largely suppressed (from 1.8 to 0.4) by OM under nonphotorespiratory conditions (high CO2), whereas under photorespiratory conditions (low CO2) this ratio was high (5.3) and under OM decreased less (to 3.1). Our results indicate that oligomycin, in organelle isolated from Pb-treated leaves, had no inhibitory effect on the mitochondrial ATPase, whereas it inhibited chloroplasts ATPase. We suggest that Pb ions affected the catalytic cycle and/or conformational changes of ATPase in pea chloroplasts differently than in mitochondria. The differences in Pb responses may reflect fine mechanisms for the regulation of ATP production in the plant cells under stress conditions.  相似文献   

17.
Protoplasts were isolated from wheat and spinach leaves and after photosynthesis in the presence of 14CO2 fractionated into a chloroplast and a nonchloroplast fraction. The kinetics of the distribution of labeled metabolities between the fractions indicated carbon flow from the chloroplasts into the cytosol and the vacuole. After 10 min of photosynthesis, more than 90% of the assimilated soluble carbon was outside the chloroplasts. Different metabolite levels indicated intracellular metabolite compartmentation and metabolite gradients. During photosynthesis, gradient coupling facilitated uphill export of triosephosphate from the chloroplasts into the cytosol. The driving force appeared to be an opposite phosphate gradient. Different ratios of phosphoglycerate to triosephosphate inside and outside the chloroplasts indicated the existence of a transenvelope pH gradient. Sucrose appeared to be synthesized outside the chloroplasts and is probably exported into the vacuole. The behavior of malate also suggested transfer into the vacuole. The malate/ aspartate ratio was higher outside the chloroplasts that inside suggesting import of reducing equivalents into the chloroplasts through the dicarboxylate translocator.  相似文献   

18.
The role of transporters in supplying energy to plant plastids   总被引:1,自引:0,他引:1  
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.  相似文献   

19.
The metabolic inter-relationships between malarial parasites and their host erythrocytes are poorly understood. They have been investigated hitherto mostly by observing parasite behavior in erythrocyte variants, in metabolically altered erythrocytes, or in cell-free in vitro systems. We have studied the interconnection between the bioenergetic metabolism of host and parasite through compartment analysis of ATP in Plasmodium falciparum-infected human red blood cells, using Sendai virus-induced host cell lysis. ATP concentrations in host and parasite compartments were found to be equal. Inhibitors of mitochondrial activity reduce ATP levels to a similar extent in host and parasite compartments, although only the parasite contains functional mitochondria. It is shown that equalization of ATP levels is brought about by means of an adenylate translocator, probably localized at the parasite plasma membrane, in conjunction with adenylate kinase activity detected both in host and parasite compartments. The translocator is inhibited by compounds which are known to inhibit specifically the translocator of the inner membrane of mammalian mitochondria, with identical inhibitory constants. Addition of these inhibitors to intact infected cells causes a rapid depletion of ATP in the host compartment and a parallel increase in the parasite, suggesting that the parasite supplies ATP to its host cell rather than the reverse.  相似文献   

20.
The temporal and spatial changes in reactive oxygen species (ROS) during dark treatment of Pelargonium cuttings and the effect of gibberellic acid (GA3) on ROS levels were studied. ROS-related fluorescence was detected in mitochondria and cytoplasm of epidermal cells and in chloroplasts. By monitoring dichlorofluorescein (DCF) fluorescence, an initial decrease in ROS was observed under darkness in the epidermal cell cytoplasm and the chloroplasts, which was followed by an increase on the third day. Following 3 days under darkness, the size and the structure of the chloroplasts also changed, and they became more sensitive to illumination as judged by a higher accumulation of ROS. Pretreatment of leaves with GA3 did not prevent the structural changes in the chloroplasts, but it inhibited the increase in ROS levels in all cell compartments, including the chloroplasts. It is suggested that the inhibition of ROS increase by GA3 prevented complete disintegration of chloroplasts during dark-induced senescence and thereby enabled the maintenance of chlorophyll levels in the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号