共查询到20条相似文献,搜索用时 0 毫秒
1.
Inositol Phospholipid Hydrolysis in Rat Cerebral Cortical Slices: I. Receptor Characterisation 总被引:18,自引:17,他引:18
Characterisation of receptor-mediated breakdown of inositol phospholipids in rat cortical slices has been performed using a direct assay which involves prelabelling with [3H]inositol. When slices were preincubated with [3H]inositol, lithium was found to greatly amplify the capacity of receptor agonists such as carbachol, noradrenaline, and 5-hydroxytryptamine to increase the amount of radioactivity appearing in the inositol phosphates. Using a large variety of agonists and antagonists it could be shown that cholinergic muscarinic, alpha 1-adrenoceptor, and histamine H1 receptors appear to be linked to inositol phospholipid breakdown in cortex. The large responses produced by receptor agonists allowed a clear discrimination between full and partial agonists as well as quantitative analysis of competitive antagonists for each receptor. Whereas carbachol and acetylcholine (in the presence of a cholinesterase inhibitor) were full agonists, oxotremorine and arecoline were only partial agonists. Very low concentrations of atropine shifted the carbachol dose-response curve to the right and allowed inhibition constants for the antagonist to be easily calculated. The nicotinic antagonist, mecamylamine, was ineffective. Noradrenaline adrenaline were full agonists at alpha 1-adrenoceptors, but phenylephrine and probably methoxamine were partial agonists. Prazosin, but not yohimbine, potently and competitively antagonised the noradrenaline inositol phospholipid response. Mepyramine but not cimetidine competitively antagonised the histamine response. These data provide strong confirmation for the potentiating effect of lithium on neurotransmitter inositol phospholipid breakdown and emphasise the ease with which functional responses at a number of cortical receptors can be characterised. 相似文献
2.
Enhanced Coupling of Neonatal Muscarinic Receptors in Rat Brain to Phosphoinositide Turnover 总被引:2,自引:7,他引:2
Anne M. Heacock Stephen K. Fisher Bernard W. Agranoff 《Journal of neurochemistry》1987,48(6):1904-1911
The relationship between the density of the muscarinic receptor in developing rat cerebral cortex and its coupling to phosphoinositide turnover is examined. Tissue slices from rats of various ages were incubated with myo-[2-3H]inositol, and the effect of carbamoylcholine on the release of total inositol phosphates was determined. Binding of [3H]quinuclidinyl benzilate was determined in the same tissue. Although muscarinic receptor density in day-18 embryonic cortex was only 5% of that in the adult, the maximal response of stimulated phosphoinositide turnover to carbamoylcholine (1-10 mM) was at the adult level (i.e., three-fold increase). Comparison of the dependence of the turnover on carbamoylcholine concentration revealed that in neonates, the dose-response curve was shifted to the left, giving a half-maximal effect at concentrations approximately tenfold lower than that in the adult. In addition, the partial muscarinic agonists oxotremorine-2 and bethanechol were both more efficacious in young rats than in adults. The differences could not be accounted for either by alterations in agonist affinity for the receptor or by the presence of "spare" muscarinic receptors. These results indicate that muscarinic receptors in fetal and newborn rat cerebral cortex are more efficiently coupled to stimulation of phosphoinositide turnover than in the adult. 相似文献
3.
Inositol Phospholipid Hydrolysis in Rat Cerebral Cortical Slices: II. Calcium Requirement 总被引:13,自引:17,他引:13
The calcium requirement for agonist-dependent breakdown of phosphatidylinositol and polyphosphoinositides has been examined in rat cerebral cortex. The omission of added Ca2+ from the incubation medium abolished [3H]inositol phosphate accumulation from prelabelled phospholipid induced by histamine, reduced that due to noradrenaline and 5-hydroxytryptamine, but did not affect carbachol-stimulated breakdown. EC50 values for agonists were unaltered in the absence of Ca2+. Removal of Ca2+ by preincubation with EGTA (0.5 mM) abolished all responses, but complete restoration was achieved by replacement of Ca2+. The EC50 for Ca2+ for histamine-stimulated [3H]inositol phosphate accumulation was 80 microM. Noradrenaline-stimulated breakdown was antagonised by manganese (IC50 1.7 mM), but not by the calcium channel blockers nitrendipine or nimodipine (30 microM). The calcium ionophore A23187 stimulated phosphatidylinositol/polyphosphoinositide hydrolysis with an EC50 of 2 microM, and this response was blocked by EGTA. Omission of Ca2+ or preincubation with EGTA or Mn2+ (EC50 = 230 microM) greatly enhanced the incorporation of [3H]inositol into phospholipids. The IC50 for Ca2+ in inhibiting incorporation was 25 microM. The results show that different receptors mediating phosphatidylinositol/polyphosphoinositide breakdown in rat cortex have quantitatively different Ca2+ requirements, and it is suggested that rigid opinions regarding phosphatidylinositol/polyphosphoinositide breakdown as either cause or effect of calcium mobilisation in rat cortex are inappropriate. 相似文献
4.
Regional Differences in the Coupling of Muscarinic Receptors to Inositol Phospholipid Hydrolysis in Guinea Pig Brain 总被引:9,自引:18,他引:9
The differential effects of muscarinic agents on inositol phospholipid hydrolysis and the role in this process of putative muscarinic receptor subtypes (M1 and M2) were investigated in three regions of guinea pig brain. Addition of the agonist oxotremorine-M to slices of neostriatum, cerebral cortex, or hippocampus incubated in the presence of myo-[2-3H]inositol and Li+ resulted in a large accumulation of labeled inositol phosphates (733, 376, and 330% of control, respectively). In each tissue, the principal product formed was myo-inositol 1-phosphate (59-86%), with smaller amounts of glycerophosphoinositol and inositol bisphosphate. Only trace amounts of inositol trisphosphate could be detected. Regional differences were observed in the capacity of certain partial agonists to evoke inositol lipid hydrolysis, the most notable being that of bethanechol, which was four times more effective in the neostriatum than in either the cerebral cortex or hippocampus. In addition, the full agonists, oxotremorine-M and carbamoylcholine, were more potent stimulators of inositol phosphate release in the neostriatum than in the cerebral cortex. The putative M1 selective agonist 4-m-chlorophenylcarbamoyloxy-2-butynyl trimethyl ammonium chloride had little stimulatory effect in any brain region, whereas the putative M1 selective antagonist pirenzepine blocked the enhanced release of inositol phosphates with high affinity in the cerebral cortex and hippocampus (Ki = 12.1 and 13.9 nM; "M1") but with a lower affinity in the neostriatum (Ki = 160 nM; "M2"). In contrast to its differential effects on stimulated inositol lipid hydrolysis, no regional differences were observed in the capacity of pirenzepine to displace [3H]quinuclidinyl benzilate, a muscarinic antagonist, bound to membrane fractions. Atropine, an antagonist that does not discriminate between receptor subtypes, inhibited the enhanced release of inositol phosphates with similar affinities in the three regions (Ki = 0.40-0.60 nM). The results indicate that by measurement of inositol lipid hydrolysis, regional differences in muscarinic receptor coupling characteristics become evident. These differences, which are not readily detected by radioligand binding techniques, might be accounted for by either the presence of functionally distinct receptor subtypes, or alternatively, by regional variations in the efficiency of muscarinic receptor coupling to inositol lipid hydrolysis. 相似文献
5.
Lithium Selectively Inhibits Muscarinic Receptor-Stimulated Inositol Tetrakisphosphate Accumulation in Mouse Cerebral Cortex Slices 总被引:7,自引:6,他引:7
The in vitro effects of Li on agonist- and depolarization-stimulated accumulation of inositol phosphates were determined in mouse cerebral cortex slices. Of the agents examined, only the cholinergic agonist carbachol produced a significant accumulation of inositol tetrakisphosphate (InsP4) in the absence of Li. Lithium at 5 mM enhanced the accumulation of inositol monophosphate (InsP1) and inositol bisphosphate (InsP2) due to all the stimuli used and potentiated inositol trisphosphate (InsP3) accumulation due to histamine and noradrenaline, although at lower Li concentrations, carbachol-stimulated InsP3 accumulation was reduced. Li also enhanced InsP4 accumulation in the presence of noradrenaline, histamine, and elevated KCl level but, in marked contrast, reduced carbachol-stimulated InsP4 accumulation with an IC50 of 100 microM. There was a significant time delay between the initiation of carbachol stimulation and the beginning of the InsP4 inhibition due to Li. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate did not mimic the effects of Li. The results suggest that muscarinic receptor-mediated InsP4 production might be one of the targets for the therapeutic action of Li. 相似文献
6.
The hippocampal vasopressin receptors have been characterised by measuring the stimulated accumulation of inositol monophosphate in the presence of 10 mM LiCl after hippocampal slices were prelabelled with [3H]inositol. Arginine-vasopressin caused a dose-dependent increase in inositol monophosphate accumulation (ED50 = 7.1 nM). The response was unchanged in the absence of Ca2+ and significantly reduced in the presence of a V1-receptor antagonist. Equimolar oxytocin was ineffective as a stimulus. This suggests that the hippocampal receptors are of the V1 type. 相似文献
7.
Depolarisation of [3H]inositol-prelabelled slices of rat cerebral cortex with elevated extracellular K+ induced a rapid and marked increase in inositol polyphosphate accumulation. Addition of the muscarinic antagonist atropine (10 microM) markedly inhibited the K+-induced accumulation of inositol tetrakisphosphate (InsP4), with only a slight reduction in stimulated inositol bis- and trisphosphate levels. Inhibitory effects on InsP4 were noted at the earliest time period measured (30 s) and suggested the involvement of released endogenous acetylcholine in part of the response. The atropine-insensitive component of depolarisation did not appear to be secondary to release of noradrenaline, histamine, or 5-hydroxytryptamine, because addition of prazosin, mepyramine, or ketanserin was without effect on the K+ response. Furthermore, secretion of a neuropeptide that could stimulate phosphoinositide hydrolysis was unlikely, because the peptidase inhibitor bacitracin was also without effect. The results suggest that endogenous acetylcholine can stimulate phosphoinositide metabolism by interacting with muscarinic receptors and that this is particularly evident on InsP4 accumulation. Atropine-insensitive responses may be secondary to Ca2+ entry via voltage-sensitive channels. 相似文献
8.
Paula Grammas Clement A. Diglio Bernard H. Marks Filiberto Giacomelli Joseph Wiener 《Journal of neurochemistry》1983,40(3):645-651
Microvessels isolated from rat cerebral cortex consist mainly of capillaries (greater than 85%). Fresh, intact microvessel preparations have been analyzed by radioligand binding techniques for muscarinic receptors. Scatchard analysis of specific quinuclidinyl benzilate (QNB) binding indicates that microvessels possess a large number of muscarinic sites (914 fmol/mg protein) of high affinity (KD = 0.034 nM). The association and dissociation rate constants (0.37 min-1 nM-1 and 0.0067 min-1, respectively) yield an equilibrium KD of 0.018 nM. Displacement of [3H]QNB by muscarinic ligands and control substances is typical of muscarinic receptors. The results indicate that cerebral microvessels possess a large population of muscarinic receptors. 相似文献
9.
Peter B. Simpson R. A. John Challiss Stefan R. Nahorski 《Journal of neurochemistry》1994,63(6):2369-2372
Abstract: The ability of receptors coupled to phosphoinositide turnover to evoke accumulation of inositol 1,4,5-trisphosphate (InsP3 ) over extended incubation periods, and consequently to affect the level of InsP3 receptor expression, was studied in cultured cerebellar granule cells. The cholinergic agonist carbachol (CCh; 1 m M ) evoked a biphasic accumulation of InsP3 , a rapid three- to fourfold peak increase over control levels at ∼10 s, decreasing within 1 min to a long-lasting plateau elevation. Using an antibody against the type I InsP3 receptor, it was demonstrated that >50% down-regulation of type I InsP3 receptor expression in cerebellar granule cells occurred within 1 h of incubation with 1 m M CCh. Over 24 h, 1 m M CCh caused an ∼85% decrease in type I InsP3 receptor levels, and significant decreases in immunoreactivity were evident at much lower concentrations of CCh. Direct assessment of total InsP3 receptor expression using a radioligand binding method also detected down-regulation, but to an apparently lesser extent. 1-Aminocyclopentane-1 S ,3 R -dicarboxylic acid (200 µ M ), an agonist of metabotropic glutamate receptors, evoked a marked decrease in type I InsP3 receptors after 24 h of incubation. These findings demonstrate that a functional consequence of maintained InsP3 production in cerebellar granule cells is the down-regulation of InsP3 receptor expression and that this down-regulation may be a common mechanism of action of phosphoinositide-linked receptors during prolonged stimulation. 相似文献
10.
Muscarinic receptor stimulation or depolarization with elevated extracellular K+ induced rapid and sustained increases in mass accumulations of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] in cerebral cortex slices. Synergistic but transient responses of both inositol polyphosphate second messengers were observed when slices were stimulated with carbachol under depolarizing conditions; this synergy was observed as an increase in the maximal responsiveness, with no significant change in EC50 values for carbachol. Omission of buffer Ca2+ ([Ca2+]e 10-20 microM) reduced basal Ins(1,4,5)P3 and Ins(1,3,4,5)P4 concentrations; the relative stimulatory effects of muscarinic receptor stimulation were maintained, but the effects of depolarization were markedly attenuated under these conditions. A component of the response to depolarization appeared to be indirectly mediated by the release of acetylcholine, because the K(+)-evoked increase in Ins(1,3,4,5)P4 was enhanced by the cholinesterase inhibitor physostigmine, and was partially attenuated by atropine. An additive suppression by nitrendipine suggests that entry of Ca2+ through L-type Ca2+ channels may serve to accelerate phosphorylation of Ins(1,4,5)P3 by 3-kinase. Norepinephrine did not significantly increase Ins(1,4,5)P3 or Ins(1,3,4,5)P4 accumulation; however, in the presence of depolarizing K+, norepinephrine caused a dramatic increase in Ins(1,3,4,5)P4 mass accumulation. In contrast, the excitatory amino acid quisqualate caused significant increases in the mass accumulations of both inositol polyphosphates measured, with no further increase being observed under depolarizing conditions. The results are discussed with respect to the interactive effects of agonist and depolarization stimuli on inositol polyphosphate accumulation which might more accurately reflect the conditions pertaining in vivo. 相似文献
11.
Differential Effects of Lithium on Muscarinic Receptor Stimulation of Inositol Phosphates in Rat Cerebral Cortex Slices 总被引:5,自引:13,他引:5
The accumulation of labelled inositol mono-, bis-, and trisphosphate in rat cerebral cortex slices was examined following preincubation with [3H]inositol. The muscarinic receptor agonist carbachol produced a rapid and sustained increased accumulation of each labelled inositol phosphate both in the presence and absence of 5 mM lithium. Lithium potentiated carbachol-stimulated accumulation of inositol monophosphate (EC50 0.5 mM) and inositol bisphosphate (EC50 4 mM) in a concentration-dependent manner. However, exposure to lithium in the presence of the muscarinic agonist produced a concentration- and time-dependent inhibition of inositol trisphosphate accumulation that was not related to receptor desensitisation. Although the present data do suggest that polyphosphoinositides are substrates for agonist-stimulated phospholipase C in brain, these results may not be entirely consistent with the production of inositol mono- and bisphosphate through inositol trisphosphate dephosphorylation. Furthermore, these data suggest site(s) additional to inositol monophosphatase that are affected by lithium. 相似文献
12.
The effect of hydrogen ion concentration on ligand binding to muscarinic acetylcholine receptors was studied in membranes isolated from rat brainstem. The binding of [3H]methylscopolamine was constant between pH 7 and 10. The affinity, but not the number, of [3H]methylscopolamine binding sites decreased below pH 7; at pH 4 little binding was detected. When brainstem membranes were incubated at various pH levels from 3 to 11 for 1 h and then returned to pH 8, [3H]methylscopolamine binding affinity was restored to control levels. Carbamylcholine binding affinity was also depressed in media of low pH. However, this decrease was permanent after a 1-h incubation at pH 4 (i.e. carbamylcholine affinity was not restored on raising the pH to 8). The capacity of a guanine nucleotide to affect carbamylcholine was also abolished by a 1-h incubation at pH 4, and was not restored by raising the pH. The guanine nucleotide-dependent regulatory protein may be irreversibly inactivated or dissociated from the receptor at low pH. The receptor's binding subunit, on the other hand, appears to be much less sensitive to hydrogen ion concentration. 相似文献
13.
Different Subcellular Localization of Muscarinic and Serotonin (S2 ) Receptors in Human, Dog, and Rat Brain 总被引:1,自引:1,他引:0
M. K. Luabeya† J. M. Maloteaux† C. De Roe‡ A. Trouet P. M. Laduron§ 《Journal of neurochemistry》1986,46(2):405-412
Cortex from rat, dog, and human brain was submitted to subcellular fractionation using an analytical approach consisting of a two-step procedure. First, fractions were obtained by differential centrifugation and were analyzed for their content of serotonin S2 and muscarinic receptors, serotonin uptake, and marker enzymes. Second, the cytoplasmic extracts were subfractionated by equilibration in sucrose density gradient. In human brain, serotonin and muscarinic receptors were found associated mostly with mitochondrial fractions which contain synaptosomes, whereas in rat brain they were concentrated mainly in the microsomal fractions. Density gradient centrifugation confirmed a more marked synaptosomal localization of receptors in human than in rat brain, the dog displaying an intermediate profile. In human brain, indeed, more receptor sites were found to be associated with the second peak characterized in electron microscopy by the largest number of nerve terminals. In addition, synaptosomes from human brain are denser than those from rat brain and some marker enzymes reveal different subcellular distribution in the three species. These data indicate that more receptors are of synaptosomal nature in human brain than in other species and this finding is compatible with a larger amount of synaptic contacts in human brain. 相似文献
14.
C. Minisclou L. Rouquier J. Benavides B. Scatton Y. Claustre 《Journal of neurochemistry》1994,62(2):557-562
Abstract: The extracellular concentration of inositol 1,4,5-trisphosphate (IP3 ) has been monitored in the ventral hippocampus of the anesthetized rat by using a microdialysis technique coupled to a radioreceptor assay. Three hours after the implantation of the cannula, basal extracellular concentration of IP3 (corrected for a 9% recovery) was 71 n M (0.39 pmol/60-µl fraction) and remained stable for at least 5 h. Local infusion of carbachol for 60 min caused a significant concentration-related increase in extracellular IP3 levels (0, 24, and 57% at 1, 50, and 100 µ M , respectively). Acetylcholine (100 µ M ) and muscarine (100 µ M ) increased IP3 outflow by 40 and 42%, respectively. The effect of carbachol was fully prevented by coinfusion of 10 µ M pirenzepine and reduced by 1 µ M tetrodotoxin indicating that the carbachol response is mediated by neuronal muscarinic receptors. These data demonstrate the feasibility of using microdialysis and a radioreceptor assay to measure IP3 in the extracellular space. This approach could prove useful for the study of the in vivo operation of muscarinic and, by extension, a number of receptors coupled to phosphoinositide turnover. 相似文献
15.
A pharmacological study was undertaken to determine whether the noradrenaline-stimulated breakdown of inositol phospholipids and the potentiation of isoprenaline-stimulated cyclic AMP by noradrenaline in rat cerebral cortex slices are mediated by the same alpha-receptor subtype. The rank order of potency of a range of alpha 1 and alpha 2 antagonists suggests that both responses may involve an alpha 1 receptor, but there were several differences between the pharmacological profiles for the two systems. Although in both cases, all selective alpha 1 antagonists were more potent than alpha 2 antagonists, the rank orders and the absolute potencies differed for the two responses. The inhibition of the inositol phosphate response was characterised by a high alpha 1/alpha 2 antagonist ratio, and in most cases, Hill slopes of inhibition were consistent with the involvement of a single receptor site. Inhibition of the cyclic AMP response had a much lower alpha 1/alpha 2 antagonist ratio and generally exhibited Hill slopes less than one. Evidence has been provided suggesting that adenosine is involved in the potentiation of cyclic AMP and that other, as yet unidentified, factors may also be involved. Even in the absence of an adenosine component, the results presented support the suggestion that the potentiation due to noradrenaline is mediated by a receptor whose identity does not easily fit with the currently accepted classification of alpha adrenoceptors. 相似文献
16.
GABAB Receptor-Mediated Inhibition of Histamine H1 -Receptor-Induced Inositol Phosphate Formation in Slices of Rat Cerebral Cortex 总被引:1,自引:2,他引:1
Histamine-stimulated accumulation of [3H]inositol monophosphate ([3H]IP1) in lithium-treated slices of rat cerebral cortex was inhibited by gamma-aminobutyric acid (GABA) (IC50 0.30 +/- 0.03 mM). The maximum level of inhibition was 69 +/- 2%. GABA alone caused a small stimulation of basal accumulation of [3H]IP1. The inhibitory action of GABA on the response to histamine was mimicked by the GABAB agonist (-)-baclofen, IC50 0.69 +/- 0.04 microM, which was 430-fold more potent as an inhibitor than the (+)-isomer. (-)-Baclofen also inhibited histamine-induced formation of [3H]inositol bisphosphate ([3H]IP2) and [3H] inositol trisphosphate ([3H]IP3). Inhibition curves for GABA and for (-)-and and (+)-baclofen had Hill coefficients greater than unity. (-)-Baclofen, at concentrations that caused inhibition of histamine-induced [3H]IP1 accumulation, did not alter the basal level of [3H]IP1 or the incorporation of [3H]inositol into total inositol phospholipids. Isoguvacine, a GABAA agonist, had no effect on either the histamine-stimulated or basal accumulation of [3H]IP1. GABA had no effect on carbachol-stimulated [3H]IP1 formation. 相似文献
17.
Differential Uptake of Lithium Isotopes by Rat Cerebral Cortex and Its Effect on Inositol Phosphate Metabolism 总被引:1,自引:0,他引:1
Twenty hours following the subcutaneous administration of 5 mEq/kg doses of 6LiCl and 7LiCl to two groups of rats, the cerebral cortex molar ratio of 6Li+/7Li+ is 1.5. The effects of the lithium isotopes on cortex myo-inositol and myo-inositol-l-phosphate levels are the same as we have reported earlier: a Li+ concentration-dependent lowering of myo-inositol and increase in myo-inositol-1-phosphate. Thus 6LiCl, when administered at the same dose as 7LiCl, produces the larger effect on inositol metabolism. When the 6LiCl and 7LiCl doses were adjusted to 5 mEq/kg and 7 mEq/kg, respectively, the cortical lithium myo-inositol and myo-inositol-1-phosphate levels of each group of animals became approximately equal, suggesting that the isotope effect occurs at the level of tissue uptake, but not on inositol phosphate metabolism. The inhibition of myo-inositol-1-phosphatase by the two lithium isotopes in vitro showed no differential effect. The isotope effect on cerebral cortex uptake of lithium is in the same direction as that reported by others for erythrocytes and for the CSF/plasma ratio, but of larger magnitude. 相似文献
18.
Bernard Lerer† Michael Stanley † Sàndra Demetriou † Samuel Gershon† 《Journal of neurochemistry》1983,41(6):1680-1683
Abstract: Single electroconvulsive shock (ECS) induced no change in [3 H]quinuclidinyl benzilate ([3 H]QNB) binding to muscarinic cholinergic receptors in rat cortex and hippocampus. ECS administered once daily for 7 days induced a significant reduction in [3 H]QNB binding in both brain areas. Concurrent ECS reversed the significant increase in cortical [3 H]QNB binding induced by chronic atropine administration. These findings may have relevance to the antidepressant or amnestic effects of electroconvulsive therapy. 相似文献
19.
Adenosine Inhibition of Histamine-Stimulated Inositol Phospholipid Hydrolysis in Mouse Cerebral Cortex 总被引:12,自引:5,他引:12
The effects of adenosine on inositol phospholipid hydrolysis in mouse cerebrocortical slices were examined. Despite having no effect alone, adenosine and some structural analogues inhibited histamine-stimulated accumulation of inositol phosphates in a concentration-dependent manner. The responses to carbachol, noradrenaline, 5-hydroxytryptamine, and elevated KCl levels were unaffected. The effect of adenosine was on the maximal response to histamine rather than on its EC50. Several adenosine antagonists competitively blocked the inhibition due to adenosine. The results are discussed in relation to the previously reported enhancement of histamine-stimulated hydrolysis of inositol phospholipids in guinea pig brain. 相似文献
20.
Noradrenaline-induced accumulation of 3H-labeled inositol mono-, bis-, and trisphosphate (IP1, IP2, and IP3, respectively) in lithium-treated slices of rat cerebral cortex preincubated with [3H]inositol was potentiated by gamma-aminobutyric acid (GABA). However, the effect on [3H]IP2 accumulation was much greater than that on [3H]IP1 or [3H]IP3 accumulation. The principal effect of GABA on noradrenaline concentration-response curves for both [3H]IP1 and [3H]IP2 was to cause an increase in the maximal response attainable. However, whereas the EC50 for GABA potentiation of [3H]IP1 formation was 0.5 mM, the curve for the potentiation of [3H]IP2 formation showed a marked upturn at GABA concentrations of greater than 1 mM. Prazosin (1 microM) blocked the noradrenaline-induced formation of all three inositol phosphates (IPs), in both the presence and the absence of 2 mM GABA. 3H-IP formation induced by phenylephrine and methoxamine was also potentiated by GABA, and again the greatest effect was on [3H]IP2 accumulation. The ratio of [3H]IP2/[3H]IP1 formed in response to 100 microM noradrenaline was increased by 2 mM GABA at all times from 10 to 60 min, whereas the ratio of [3H]IP3/[3H]IP1 was little altered. The effect of GABA was not mimicked by the GABAA agonists isoguvacine and 3-aminopropanesulphonic acid and was not blocked by bicuculline methiodide. (-)-Baclofen, a GABAB agonist, did produce some stimulation of the response to noradrenaline, but to a much lesser extent than GABA. Of the agents tested, nipecotic acid came nearest to reproducing the effect of GABA, in that the major effect was on [3H]IP2 accumulation. The effects of 2 mM GABA and 2 mM nipecotic acid were not additive. GABA potentiation of noradrenaline-induced 3H-IP formation was still apparent in the absence of Li+, but the increase of [3H]IP2 content was less than that of [3H]IP1 content. 相似文献