首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary

Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca2+-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ (‘Ca2+ cycling’) is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability (‘pore’ formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

2.
3.
The influence of NO donors, nitroglycerin (NG) and sodium nitroprusside (SNP), on Ca2+- uptake in rat heart and liver mitochondria is studied. It is shown that in vivo NG causes a rapid dose-dependent increase of Ca2+-uptake in rat heart mitochondria most pronounced at 0,5-1,0 mg/kg weight NG. This sharp increase of Ca2+-uptake is not accounted for by changes in membrane potential of mitochondria (deltapsim) because deltapsim is not influenced by less than 1,0 mg/kg NG, and moreover, decrease by approximately 30% is observed at 1,0-1,5 mg/kg NG. In vitro, on the contrary, a concentration-dependent decrease in Ca2+-uptake caused by NG as well as SNP is observed together with simultaneous decrease of deltapsim and concentration-dependent release of Ca2+ from mitochondria via Ca2+-uniporter as the result of partial depolarisation of mitochondrial inner membrane. The data obtained give an evidence that increase in Ca2+-uptake caused by NO donor in vivo takes place independently of changes in deltapsim and also is not resulted from a direct action of NO on Ca2+-uniporter. These observations allow us to suppose that activation of mitochondrial Ca2+-uptake in vivo and corresponding decrease in cytosolic Ca2+ concentration could be involved in vasodilatory action of nitric oxide.  相似文献   

4.
5.
Denervation of rat skeletal muscle produces after 14 days a decrease in Ca2+ uptake of a heterogeneous population of sarcoplasmic-reticulum vesicles, when measured in the presence of oxalate. The Mg2+-dependent ATPase (Ca2+-independent) activity increased after the same period and the Ca2+ + Mg2+-dependent ATPase activity decreased. Concomitant with these changes, there was an increase in vesicle size and calcium content. The observations are discussed in terms of changes in altered membrane structure, manifested in the shift of the equilibrium of the ATPase from an enzyme involved in calcium transport to a phosphoenzyme giving rise to an increase in the Mg2+-dependent ATPase activity.  相似文献   

6.
Incubation of Ca2(+)-loaded rat liver mitochondria with N-acetyl-p-benzoquinone imine (NAPQI) or its two dimethylated analogues resulted in a concentration dependent Ca2+ release, with the following order of potency: 2,6-(Me)2-NAPQI greater than NAPQI greater than 3,5-(Me)2-NAPQI. The quinone imine-induced Ca2+ release was associated with NAD(P)H oxidation and was prevented when NAD(P)+ reduction was stimulated by the addition of 3-hydroxybutyrate. Mitochondrial glutathione was completely depleted within 0.5 min by all three quinone imines, even at low concentrations that did not result in Ca2+ release. Depletion of mitochondrial GSH by pretreatment with 1-chloro-2,4-dinitrobenzene enhanced quinone imine-induced NAD(P)H oxidation and Ca2+ release. However, 3-hydroxybutyrate protected from quinone imine-induced Ca2+ release in GSH-depleted mitochondria. Mitochondrial membrane potential was lost after the addition of quinone imines at concentrations that caused rapid Ca2+ release; however, subsequent addition of EGTA led to the complete recovery of the transmembrane potential. In the absence of Ca2+, the quinone imines caused only a small and transient loss of the transmembrane potential. Taken together, our results suggests that the quinone imine-induced Ca2+ release from mitochondria is a consequence of NAD(P)H oxidation rather than GSH depletion, GSSG formation, or mitochondrial inner membrane damage.  相似文献   

7.
Ultraturrax and Nagarse released populations of mitochondria isolated from control and day 21 denervated rat soleus muscle were characterized with respect to their oxidative phosphorylation, ADP translocase and ATPase activities. Both Ultraturrax and Nagarse released mitochondrial populations displayed lower capacities for oxidative phosphorylation; lower ADP translocase activities and higher Mg2+ stimulated ATPase activities than their corresponding controls. For both the denervated and control states, the Nagarse-released mitochondrial populations displayed significantly higher respiratory activities than the Ultraturrax released fractions. The significance of these findings is discussed with regard to the process of mitochondrial respiratory control. In addition the role of mitochondrial dysfunction in denervation muscular atrophy is assessed.  相似文献   

8.
9.
Satellite cells (SCs) in normal adult muscle are quiescent. They can enter the mitotic program when stimulated with growth factors such as basic FGF. Short-term denervation stimulates SC to enter the mitotic cycle in vivo, whereas long-term denervation depletes the SC pool. The molecular basis for the neural influence on SCs has not been established. We studied the phenotype and the proliferative capacity of SCs from muscle that had been denervated before being cultured in vitro. The expression of PCNA, myogenin, and muscle (M)-cadherin in SCs of normal and denervated muscle fibers was examined at the single-cell level by immunolabeling in a culture system of isolated rat muscle fibers with attached SCs. Immediately after plating (Day 0), neither PCNA nor myogenin was present on normal muscle fibers, but we detected an average of 0.5 M-cadherin(+) SCs per muscle fiber. The number of these M-cadherin(+) cells (which are negative for PCNA and myogenin) increased over the time course examined. A larger fraction of cells negative for M-cadherin underwent mitosis and expressed PCNA, followed by myogenin. The kinetics of SCs from muscle fibers denervated for 4 days before culturing were similar to those of normal controls. Denervation from 1 to 32 weeks before plating, however, suppressed PCNA and myogenin expression almost completely. The fraction of M-cadherin(+) (PCNA(-)/myogenin(-)) SCs was decreased after 1 week of denervation, increased above normal after denervation for 4 or 8 weeks, and decreased again after denervation for 16 or 32 weeks. We suggest that the M-cadherin(+) cells are nondividing SCs because they co-express neither PCNA or myogenin, whereas the cells positive for PCNA or myogenin (and negative for M-cadherin) have entered the mitotic cycle. SCs from denervated muscle were different from normal controls when denervated for 1 week or longer. The effect of denervation on the phenotypic modulation of SCs includes resistance to recruitment into the mitotic cycle under the conditions studied here and a robust extension of the nonproliferative compartment. These characteristics of SCs deprived of neural influence may account for the failure of denervated muscle to fully regenerate. (J Histochem Cytochem 47:1375-1383, 1999)  相似文献   

10.
M Bragadin  T Pozzan  G F Azzone 《Biochemistry》1979,18(26):5972-5978
The rate of aerobic Ca2+ transport is limited by the rate of the H+ pump rather than by the Ca2+ carrier. The kinetics of the Ca2+ carrier has therefore been studied by using the K+ diffusion potential as the driving force. The apparent Vmax of the Ca2+ carrier is, at 20 degrees C, about 900 nmol (mg of protein)-1 min-1, more than twice the rate of the H+ pump. The apparent Vmax is depressed by Mg2+ and Li+. This supports the view that the electrolytes act as noncompetitive inhibitors of the Ca2+ carrier. The degree of sigmoidicity of the kinetics of Ca2+ transport increases with the lowering of the temperature and proportionally with the concentration of impermeant electrolytes such as Mg2+ and Li+ but not choline. The effects of temperature and of electrolyte do not support the view that the sigmoidicity is due to modifications of the surface potential. Rather, they suggest that Ca2+ transport occurs through a multisubunit carrier, where cooperative phenomena are the result of ligand-induced conformational changes due to the interaction of several allosteric effectors with the carrier subunits. In contrast with La3+ which acts as a competitive inhibitor, Ruthenium Red affects the kinetics by inducing phenomena both of positive and of negative cooperativity. The Ruthenium Red induced kinetics has been reproduced through curve-fitting procedures by applying the Koshland sequential interaction hypothesis to a four-subunit Ca2+ carrier model.  相似文献   

11.
A transient Ca2+ release from preloaded mitochondria can be induced by a sudden decrease in the pH of the outer medium from 8.0 or 7.4 to 6.8. In the presence of inorganic phosphate the released Ca2+ is not taken up again. Upon Ca2+ addition to respiring mitochondria the mitochondrial membrane potential (Δ♀) decreases to a new resting level. A further decrease in Δ♀ occurs after the decrease in pH from 7.4 to 6.8, concomitant with the reuptake phase of the Ca2+ release. Phosphate, EGTA, and ruthenium red restore Δ♀ to its initial level. If phosphate is present initially, only transient changes in Δ♀ occur upon addition of Ca2+ or H+ ions. Only a small transient change in Δ♀ upon H+ ion addition is seen in the absence of accumulated Ca2+. La3+, a competitive inhibitor of Ca2+ transport, prevents the H+ ion-induced Ca2+ efflux, whereas this is not the case in the presence of the noncompetitive inhibitor ruthenium red. Ruthenium red, however, prevents the reuptake phase. Mg2+, an inhibitor of the surface binding of Ca2+, has no or only a slight effect on the H+ ion-induced Ca2+ release. Mitochondria preloaded with Ca2+ release a small fraction of Ca2+ during the subsequent uptake of another pulse of Ca2+. The results indicate that at least one pool of mitochondrial Ca2+ exists in a mobile state. The possible existence of a H+Ca2+ exchanger in the mitochondrial membrane is discussed.  相似文献   

12.
The independent pathway for Ca2+ efflux of rat liver mitochondria exhibits a sharp temperature and pH dependence. The Arrhenius plot displays a break at 18 degrees C, activation energy being about 117 kJ/mol below 18 degrees C and 59 kJ/mol above 18 degrees C. The pH profile is bell-shaped, with a broad optimum at pH 7.0. These properties of the efflux pathway, together with the membrane potential modulation recently described (Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383), suggest an explanation for the phenomenon of rebounding Ca2+ transport. Addition of a Ca2+ pulse to respiring mitochondria causes (i) a phase of rapid Ca2+ uptake, leading to a decrease of extramitochondrial free Ca2+ to a lower level with respect to that maintained before Ca2+ addition, and (ii) a slower phase of net Ca2+ efflux, leading to restoration of the steady-state extramitochondrial free Ca2+ preceeding Ca2+ addition. Evidence is provided that the excess Ca2+ uptake is linked to transient inactivation of the efflux pathway due to membrane depolarization. Conversely, the efflux phase is linked to reactivation of the efflux pathway upon repolarization. The efflux component of the rebound cycle and the isolated efflux pathway exhibit similar dependence on temperature, pH and membrane potential.  相似文献   

13.
The efflux of Ca2+ from rat heart mitochondria has been examined by using Ruthenium Red to inhibit active uptake after predetermined loadings with Ca2+. The efflux is proportional to the internal Ca2+ load; it is increased by Na+ applied when the mitochondria are respiring and this effect is inhibited by oligomycin. The efflux of Ca2+ is diminished by ATP and by ADP, with the latter the more effective. Both active uptake and efflux of Ca2+ are slowed by bongkrekic acid; this action has a time lag. The lower efflux found with the nucleotides and with bongkrekic acid seems to correspond to the more condensed state seen in the electron microscope when these agents are applied [Stoner & Sirak (1973) J. Cell Biol. 56, 51-64, 65-73]. The results are discussed in relation to the less-permeable state being contingent upon nucleotide binding to the membrane.  相似文献   

14.
15.
Respiring liver mitochondria were allowed to export Ca2+ on the endogenous Ca2+/nH+ antiporter in the presence of Ruthenium Red (to inhibit uptake on the Ca2+ uniporter) until a steady state was reached. Addition of sufficient of the ionophore A23187 (which catalyses Ca2+/2H+ exchange) to bring the Ca2+ and H+ gradients into equilibrium did not alter the steady state. Thermodynamic analysis showed that if a Ca2+/nH+ exchange with any value of n other than 2 was at equilibrium, addition of A23187 would have caused an easily measurable change in extramitochondrial free [Ca2+]. Therefore, the endogenous carrier of liver mitochondria catalyses electroneutral Ca2+/2H+ antiport.  相似文献   

16.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat liver mitochondria appeared to be essentially similar to those described previously for other mammalian tissues. In particular, the enzymes were activated severalfold by Ca2+, with half-maximal effects at about 1 microM-Ca2+ (K0.5 value). In intact rat liver mitochondria incubated in a KCl-based medium containing 2-oxoglutarate and malate, the amount of active, non-phosphorylated, pyruvate dehydrogenase could be increased severalfold by increasing extramitochondrial [Ca2+], provided that some degree of inhibition of pyruvate dehydrogenase kinase (e.g. by pyruvate) was achieved. The rates of 14CO2 production from 2-oxo-[1-14C]glutarate at non-saturating, but not at saturating, concentrations of 2-oxoglutarate by the liver mitochondria (incubated without ADP) were similarly enhanced by increasing extramitochondrial [Ca2+]. The rates and extents of NAD(P)H formation in the liver mitochondria induced by non-saturating concentrations of 2-oxoglutarate, glutamate, threo-DS-isocitrate or citrate were also increased in a similar manner by Ca2+ under several different incubation conditions, including an apparent 'State 3.5' respiration condition. Ca2+ had no effect on NAD(P)H formation induced by beta-hydroxybutyrate or malate. In intact, fully coupled, rat liver mitochondria incubated with 10 mM-NaCl and 1 mM-MgCl2, the apparent K0.5 values for extramitochondrial Ca2+ were about 0.5 microM, and the effective concentrations were within the expected physiological range, 0.05-5 microM. In the absence of Na+, Mg2+ or both, the K0.5 values were about 400, 200 and 100 nM respectively. These effects of increasing extramitochondrial [Ca2+] were all inhibited by Ruthenium Red. When extramitochondrial [Ca2+] was increased above the effective ranges for the enzymes, a time-dependent deterioration of mitochondrial function and ATP content was observed. The implications of these results on the role of the Ca2+-transport system of the liver mitochondrial inner membrane are discussed.  相似文献   

17.
Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria   总被引:1,自引:0,他引:1  
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport.  相似文献   

18.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

19.
Treatment of rat brain synaptosomal lysate with N-ethylmaleimide (NEM) was found to stimulate ATP-dependent Ca2+-uptake. This Ca2+-uptake stimulation was blocked by dithioerythritol (DTE), mitochondrial inhibitors oligomycin and sodium azide, but not by vanadate, an inhibitor of plasma membrane Ca2+ pump. Maximal stimulation of Ca2+-uptake was observed at a NEM/protein ratio of 0.1 mumole/0.5-1.0 mg. On fractionation, it was found that NEM did not affect synaptic plasma membrane Ca2+-uptake, but almost doubled it in synaptic mitochondria.  相似文献   

20.
Inositol hexakisphosphate (InsP6) stimulates 45Ca2+ influx in purified mitochondria from rat liver. The action of InsP6 is concentration-dependent, with an apparent EC50 value of 50 microM. Stimulation of 45Ca2+ influx may follow the interaction between InsP6 and specific membrane receptors. Accordingly, [3H]InsP6 binds to specific and saturable recognition sites in purified mitochondria. These results support the view that InsP6 acts as a signal molecule to regulate the intracellular homeostasis of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号