首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.  相似文献   

2.
Dual localization of proteins at the plasma membrane and within the nucleus has been reported in mammalian cells. Among these proteins are those involved in cell adhesion structures and in clathrin-mediated endocytosis. In the case of endocytic proteins, trafficking to the nucleus is not known to play a role in their endocytic function. Here, we show localization of the yeast endocytic adaptor protein Sla1p to the nucleus as well as to the cell cortex and we demonstrate the importance of specific regions of Sla1p for this nuclear localization. A role for specific karyopherins (importins and exportins) in Sla1p nuclear localization is revealed. Furthermore, endocytosis of Sla1p-dependent cargo is defective in three strains with karyopherin mutations. Finally, we investigate possible functions for nuclear trafficking of endocytic proteins. Our data reveal for the first time that nuclear transport of endocytic proteins is important for functional endocytosis in Saccharomyces cerevisiae. We determine the mechanism, involving an alpha/beta importin pair, that facilitates uptake of Sla1p and demonstrate that nuclear transport is required for the functioning of Sla1p during endocytosis.  相似文献   

3.
SLA1 was identified previously in budding yeast in a genetic screen for mutations that caused a requirement for the actin-binding protein Abp1p and was shown to be required for normal cortical actin patch structure and organization. Here, we show that Sla1p, like Abp1p, localizes to cortical actin patches. Furthermore, Sla1p is required for the correct localization of Sla2p, an actin-binding protein with homology to talin implicated in endocytosis, and the Rho1p-GTPase, which is associated with the cell wall biosynthesis enzyme beta-1,3-glucan synthase. Mislocalization of Rho1p in sla1 null cells is consistent with our observation that these cells possess aberrantly thick cell walls. Expression of mutant forms of Sla1p in which specific domains were deleted showed that the phenotypes associated with the full deletion are functionally separable. In particular, a region of Sla1p encompassing the third SH3 domain is important for growth at high temperatures, for the organization of cortical actin patches, and for nucleated actin assembly in a permeabilized yeast cell assay. The apparent redundancy between Sla1p and Abp1p resides in the C-terminal repeat region of Sla1p. A homologue of SLA1 was identified in Schizosaccharomyces pombe. Despite relatively low overall sequence homology, this gene was able to rescue the temperature sensitivity associated with a deletion of SLA1 in Saccharomyces cerevisiae.  相似文献   

4.
The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end-binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3Deltabud6Deltatea1Delta triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.  相似文献   

5.
The Prk1 family of protein kinases are important regulators of endocytosis and actin cytoskeleton in some eukaryotic cells. In budding yeast, Prk1p phosphorylates numerous endocytic proteins including Pan1p and Sla1p. Prk1p has been observed to undergo autophosphorylation in vivo . In this study, we determined the sites and underlying role of the autophosphorylation. Two sites located in the noncatalytic region were identified to be the autophosphorylation sites. When the sites were mutated, the non-autophosphorylatable Prk1p phosphorylated Pan1p and Sla1p more efficiently than the wild-type kinase, suggesting a negative effect of the autophosphorylation. In addition, the dynamic properties of actin and the coat complex were also altered in the autophosphorylation mutant cells. Interestingly, the autophosphorylation of Prk1p was dependent on cortical localization of the kinase and could be induced by phosphorylated Sla1p. These results suggest that the autophosphorylation of Prk1p may represent a feedback mechanism possibly involved in fine-tuning the pace of progression during actin-coupled endocytosis.  相似文献   

6.
The serine/threonine kinase Prk1p is known to be involved in the regulation of the actin cytoskeleton organization in budding yeast. One possible function of Prk1p is the negative regulation of Pan1p, an actin patch regulatory protein that forms a complex in vivo with at least two other proteins, Sla1p and End3p. In this report, we identified Sla1p as another substrate for Prk1p. The phosphorylation of Sla1p by Prk1p was established in vitro with the use of immunoprecipitated Prk1p and in vivo with the use of PRK1 overexpression, and was further supported by the finding that immunoprecipitated Sla1p contained PRK1- and ARK1-dependent kinase activities. Stable complex formation between Prk1p and Sla1p/Pan1p in vivo could be observed once the phosphorylation reaction was blocked by mutation in the catalytic site of Prk1p. Elevation of Prk1p activities in wild-type cells resulted in a number of deficiencies, including those in colocalization of Pan1p and Sla1p, endocytosis, and cell wall morphogenesis, likely attributable to a disintegration of the Pan1p/Sla1p/End3p complex. These results lend a strong support to the model that the phosphorylation of the Pan1p/Sla1p/End3p complex by Prk1p is one of the important mechanisms by which the organization and functions of the actin cytoskeleton are regulated.  相似文献   

7.
Drs2p family P-type ATPases (P4-ATPases) are required in multiple vesicle-mediated protein transport steps and are proposed to be phospholipid translocases (flippases). The P4-ATPases Drs2p and Dnf1p cycle between the exocytic and endocytic pathways, and here we define endocytosis signals required by these proteins to maintain a steady-state localization to internal organelles. Internalization of Dnf1p from the plasma membrane uses an NPFXD endocytosis signal and its recognition by Sla1p, part of an endocytic coat/adaptor complex with clathrin, Pan1p, Sla2p/End4p, and End3p. Drs2p has multiple endocytosis signals, including two NPFXDs near the C terminus and PEST-like sequences near the N terminus that may mediate ubiquitin (Ub)-dependent endocytosis. Drs2p localizes to the trans-Golgi network in wild-type cells and accumulates on the plasma membrane when both the Ub- and NPFXD-dependent endocytic mechanisms are inactivated. Surprisingly, the pan1-20 temperature-sensitive mutant is constitutively defective for Ub-dependent endocytosis but is not defective for NPFXD-dependent endocytosis at the permissive growth temperature. To sustain viability of pan1-20, Drs2p must be endocytosed through the NPFXD/Sla1p pathway. Thus, Drs2p is an essential endocytic cargo in cells compromised for Ub-dependent endocytosis. These results demonstrate an essential role for endocytosis in retrieving proteins back to the Golgi, and they define critical cargos of the NPFXD/Sla1p system.  相似文献   

8.
Cytokinesis requires the polarization of the actin cytoskeleton, the secretion machinery, and the correct positioning of the division axis. Budding yeast cells commit to their cytokinesis plane by choosing a bud site and polarizing their growth. Iqg1p (Cyk1p) was previously implicated in cytokinesis (Epp and Chant, 1997; Lippincott and Li, 1998; Osman and Cerione, 1998), as well as in the establishment of polarity and protein trafficking (Osman and Cerione, 1998). To better understand how Iqg1p influences these processes, we performed a two-hybrid screen and identified the spatial landmark Bud4p as a binding partner. Iqg1p can be coimmunoprecipitated with Bud4p, and Bud4p requires Iqg1p for its proper localization. Iqg1p also appears to specify axial bud-site selection and mediates the proper localization of the septin, Cdc12p, as well as binds and helps localize the secretion landmark, Sec3p. The double mutants iqg1Deltasec3Delta and bud4Deltasec3Delta display defects in polarity, budding pattern and cytokinesis, and electron microscopic studies reveal that these cells have aberrant septal deposition. Taken together, these findings suggest that Iqg1p recruits landmark proteins to form a targeting patch that coordinates axial budding with cytokinesis.  相似文献   

9.
The EH domain proteins Pan1p and End3p of budding yeast have been known to form a complex in vivo and play important roles in organization of the actin cytoskeleton and endocytosis. In this report, we describe new findings concerning the function of the Pan1p-End3p complex. First, we found that the Pan1p-End3p complex associates with Sla1p, another protein known to be required for the assembly of cortical actin structures. Sla1p interacts with the first long repeat region of Pan1p and the N-terminal EH domain of End3p, thus leaving the Pan1p-End3p interaction, which requires the second long repeat of Pan1p and the C-terminal repeat region of End3p, undisturbed. Second, Pan1p, End3p, and Sla1p are also required for normal cell wall morphogenesis. Each of the Pan1-4, sla1Delta, and end3Delta mutants displays the abnormal cell wall morphology previously reported for the act1-1 mutant. These cell wall defects are also exhibited by wild-type cells overproducing the C-terminal region of Sla1p that is responsible for interactions with Pan1p and End3p. These results indicate that the functions of Pan1p, End3p, and Sla1p in cell wall morphogenesis may depend on the formation of a heterotrimeric complex. Interestingly, the cell wall abnormalities exhibited by these cells are independent of the actin cytoskeleton organization on the cell cortex, as they manifest despite the presence of apparently normal cortical actin cytoskeleton. Examination of several act1 mutants also supports this conclusion. These observations suggest that the Pan1p-End3p-Sla1p complex is required not only for normal actin cytoskeleton organization but also for normal cell wall morphogenesis in yeast.  相似文献   

10.
BACKGROUND: In many cell types, microtubules are thought to direct the spatial distribution of F-actin in cell polarity. Schizosaccharomyces pombe cells exhibit a regulated program of polarized cell growth: after cell division, they grow first in a monopolar manner at the old end, and in G2 phase, initiate growth at the previous cell division site (the new end). The role of microtubule ends in cell polarity is highlighted by the finding that the cell polarity factor, tea1p, is present on microtubule plus ends and cell tips [1]. RESULTS: Here, we characterize S. pombe bud6p/fat1p, a homolog of S. cerevisiae Bud6/Aip3. bud6Delta mutant cells have a specific defect in the efficient initiation of growth at the new end and like tea1Delta cells, form T-shaped cells in a cdc11 background. Bud6-GFP localizes to both cell tips and the cytokinesis ring. Maintenance of cell tip localization is dependent upon actin but not microtubules. Bud6-GFP localization is tea1p dependent, and tea1p localization is not bud6p dependent. tea1Delta and bud6Delta cells generally grow in a monopolar manner but exhibit different growth patterns. tea1(Delta)bud6Delta mutants resemble tea1Delta mutants. Tea1p and bud6p coimmunoprecipitate and comigrate in large complexes. CONCLUSIONS: Our studies show that tea1p (a microtubule end-associated factor) and bud6p (an actin-associated factor) function in a common pathway, with bud6p downstream of tea1p. To our knowledge, bud6p is the first protein shown to interact physically with tea1p. These studies delineate a pathway for how microtubule plus ends function to polarize the actin cytoskeleton through actin-associated polarity factors.  相似文献   

11.
Correct positioning of the cell-division plane is crucial for cell function in all organisms. The fission yeast Schizosaccharomyces pombe divides by utilizing an actomyosin-based contractile ring and is an attractive model for the study of cytokinesis. The metazoan anillin-related protein Mid1p stimulates medial assembly of the division septum by recruiting actomyosin-ring components to the medial cortex. Here, we describe an inhibitory mechanism, involving the cell-end-localized polarity determinants Tea1p, Tea4p/Wsh3p, and Pom1p (tip complex), which prevents division-septum assembly at the cell ends. While Mid1p and the tip complex are dispensable for cell viability, their simultaneous loss leads to lethality. The FER/CIP homology protein Cdc15p, which organizes the actomyosin ring and cell membranes during cytokinesis, is a candidate for regulation by the tip complex. Since dual regulation of division-site placement is also seen in nematodes, such regulation might be a general feature of eukaryotic cytokinesis.  相似文献   

12.
13.
Schizosaccharomyces pombe cells divide through the use of an actomyosin-based contractile ring. In response to perturbation of the actomyosin ring, S. pombe cells delay in a "cytokinesis-competent" state characterized by continuous repair and maintenance of the actomyosin ring and a G2 delay. This checkpoint mechanism requires the function of the Cdc14p-family phosphatase Clp1p/Flp1p and the septation initiation network (SIN). In response to cytokinetic defects, Clp1p, normally nucleolar in interphase, is retained in the cytoplasm until completion of cell division in a SIN-dependent manner. Here, we show that a phosphorylated form of Clp1p binds the 14-3-3 protein Rad24p and is retained in the cytoplasm in a Rad24p-dependent manner in response to cytokinesis defects. This physical interaction depends on the function of the SIN component, Sid2p. In the absence of Rad24p, cells are unable to maintain SIN signaling and lose viability upon mild cytokinetic stress. The requirement of Rad24p in this checkpoint is bypassed by ectopic activation of the SIN. Furthermore, SIN-dependent nuclear exclusion of Clp1p is dependent on Rad24p function. We conclude that Rad24p-mediated cytoplasmic retention of Clp1p/Flp1p is important for cell viability upon stress to the division apparatus.  相似文献   

14.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.  相似文献   

15.
Control of actin assembly nucleated by the Arp2/3 complex plays a crucial role during budding yeast endocytosis. The yeast Eps15-related Arp2/3 complex activator, Pan1p, is essential for endocytic internalization and proper actin organization. Pan1p activity is negatively regulated by Prk1 kinase phosphorylation after endocytic internalization. Phosphorylated Pan1p is probably then dephosphorylated in the cytosol. Pan1p is recruited to endocytic sites approximately 25 s before initiation of actin polymerization, suggesting that its Arp2/3 complex activation activity is kept inactive during early stages of endocytosis by a yet-to-be-identified mechanism. However, how Pan1p is maintained in an inactive state is not clear. Using tandem affinity purification-tagged Pan1p, we identified End3p as a stoichiometric component of the Pan1p complex, and Sla2p, a yeast Hip1R-related protein, as a novel binding partner of Pan1p. Interestingly, Sla2p specifically inhibited Pan1p Arp2/3 complex activation activity in vitro. The coiled-coil region of Sla2p was important for Pan1p inhibition, and a pan1 partial loss-of-function mutant suppressed the temperature sensitivity, endocytic phenotypes, and actin phenotypes observed in sla2DeltaCC mutant cells that lack the coiled-coil region. Overall, our results establish that Sla2p's regulation of Pan1p plays an important role in controlling Pan1p-stimulated actin polymerization during endocytosis.  相似文献   

16.
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.  相似文献   

17.
Microtubules regulate actin-based processes such as cell migration and cytokinesis, but molecular mechanisms are not understood. In the fission yeast Schizosaccharomyces pombe, microtubule plus ends regulate cell polarity in part by transporting the kelch repeat protein tea1p to cell ends. Here, we identify tea4p, a SH3 domain protein that binds directly to tea1p. Like tea1p, tea4p localizes to growing microtubule plus ends and to cortical sites at cell ends, and it is necessary for the establishment of bipolar growth. Tea4p binds directly to and recruits the formin for3p, which nucleates actin cable assembly. During "new end take off" (NETO), formation of a protein complex that includes tea1p, tea4p, and for3p is necessary and sufficient for the establishment of cell polarity and localized actin assembly at new cell ends. Our results suggest a molecular mechanism for how microtubule plus ends regulate the spatial distribution of actin assembly.  相似文献   

18.
The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis.  相似文献   

19.
The Candida albicans INT1 gene is important for hyphal morphogenesis, adherence, and virulence (C. Gale, C. Bendel, M. McClellan, M. Hauser, J. M. Becker, J. Berman, and M. Hostetter, Science 279:1355-1358, 1998). The ability to switch between yeast and hyphal morphologies is an important virulence factor in this fungal pathogen. When INT1 is expressed in Saccharomyces cerevisiae, cells grow with a filamentous morphology that we exploited to gain insights into how C. albicans regulates hyphal growth. In S. cerevisiae, INT1-induced filamentous growth was affected by a small subset of actin mutations and a limited set of actin-interacting proteins including Sla2p, an S. cerevisiae protein with similarity in its C terminus to mouse talin. Interestingly, while SLA2 was required for INT1-induced filamentous growth, it was not required for polarized growth in response to several other conditions, suggesting that Sla2p is not required for polarized growth per se. The morphogenesis checkpoint, mediated by Swe1p, contributes to INT1-induced filamentous growth; however, epistasis analysis suggests that Sla2p and Swe1p contribute to INT1-induced filamentous growth through independent pathways. The C. albicans SLA2 homolog (CaSLA2) complements S. cerevisiae sla2Delta mutants for growth at 37 degrees C and INT1-induced filamentous growth. Furthermore, in a C. albicans Casla2/Casla2 strain, hyphal growth did not occur in response to either nutrient deprivation or to potent stimuli, such as mammalian serum. Thus, through analysis of INT1-induced filamentous growth in S. cerevisiae, we have identified a C. albicans gene, SLA2, that is required for hyphal growth in C. albicans.  相似文献   

20.
The p21-activated kinase (PAK) homolog, Shk1, is a critical component of a multifunctional Ras/Cdc42/PAK complex required for viability, polarized growth and cell shape, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Substrate targets of the Shk1 kinase have not previously been described. Here we show that the S. pombe cell polarity factor, Tea1, is directly phosphorylated by Shk1 in vitro. We demonstrate further that Tea1 is phosphorylated in S. pombe cells and that its level of phosphorylation is significantly reduced in cells defective in Shk1 function. Consistent with a role for Tea1 as a potential downstream effector of Shk1, we show that a tea1 null mutation rescues the Shk1 hyperactivity-induced lethal phenotype caused by loss of function of the essential Shk1 inhibitor, Skb15. All phenotypes associated with Skb15 loss, including defects in actin cytoskeletal organization, chromosome segregation, and cytokinesis, are suppressed by tea1 Delta, suggesting that Tea1 is a potential mediator of multiple Shk1 functions. S. pombe cells carrying a weak hypomorphic allele of shk1 together with a tea1 Delta mutation exhibit a cytokinesis defective phenotype that is significantly more severe than that observed in the respective single mutants, providing evidence that Shk1 and Tea1 cooperate to regulate cytokinesis. In addition, we show that S. pombe cells carrying the orb2-34 allele of shk1 exhibit a pattern of monopolar growth similar to that observed in tea1 Delta cells, suggesting that Shk1 and Tea1 may regulate one or more common processes involved in the regulation of polarized cell growth. Taken together, our results strongly implicate Tea1 as a potential substrate-effector of the Shk1 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号