首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetal pole cells and commitment to form endoderm in Xenopus laevis   总被引:3,自引:0,他引:3  
In order to compare their states of commitment with their normal developmental fate, single vegetal pole cells from early Xenopus embryos were labeled and transplanted into the blastocoels of host embryos. In a previous study we showed, using this single cell transplantation assay, that vegetal pole cells become committed to endoderm by the early gastrula stage. In this paper we examine some properties of the commitment process. First, we show that it is gradual. When vegetal blastomeres are taken from progressively older embryos an increasing number of them enter only the endoderm, until by the early gastrula stage they all do. Second, we show that commitment can continue in vitro when an appropriate tissue mass is present. We suggest that commitment to form endoderm may be, in the right conditions, a cell autonomous process.  相似文献   

2.
Primitive blood cells differentiate from the ventral mesoderm blood islands in Xenopus embryos. In order to determine the tissue interactions that propagate blood formation in early embryogenesis, we used embryos that had the ventral cytoplasm removed. These embryos gastrulated normally, formed a mesodermal layer and lacked axial structures, but displayed a marked enhancement of alpha-globin expression. Early ventral markers, such as msx-1, vent-1 and vent-2 were highly expressed at the gastrula stage, while a dorsal marker, goosecoid, was diminished. Several lines of experimental evidence demonstrate the critical role of animal pole-derived ectoderm in blood cell formation: 1) Mesoderm derived from dorsal blastomeres injected with beta-galactosidase mRNA (as a lineage tracer) expressed alpha-globin when interfaced with an animal pole-derived ectodermal layer; 2) Embryos in which the animal pole tissue had been removed by dissection at the blastula stage failed to express alpha-globin; 3) Exogastrulated embryos that lacked an interaction between the mesodermal and ectodermal layers failed to form blood cells, while muscle cells were observed in these embryos. Using dominant-negative forms of the BMP-4 and ALK-4 receptors, we showed that activin and BMP-4 signaling is necessary for blood cell differentiation in ventral marginal zone explants, while FGF signaling is not essential. In ventralized embryos, inactivation of the BMP-4 signal within a localized area of the ectoderm led to suppression of globin expression in the adjacent mesoderm layer, but inactivation of the activin signal did not have this effect. These observations suggest that mesodermal cells, derived from a default pathway that is induced by the activin signal, need an additional BMP-4-dependent factor from the overlying ectoderm for further differentiation into a blood cell lineage.  相似文献   

3.
J Heasman  C C Wylie  P Hausen  J C Smith 《Cell》1984,37(1):185-194
Vegetal pole cells of Xenopus morulae contribute progeny to all three germ layers, but from the midblastula stage onward they contribute only to the endoderm. We have investigated whether this restriction in fate reflects cell determination by implanting labeled vegetal pole cells into the blastocoels of host embryos and asking which structures later include labeled progeny. Single vegetal pole cells from the morula and also from the midblastula stage can contribute progeny to all germ layers. At the early gastrula stage the cells can contribute only to the endoderm. Thus the restriction of fate in the midblastula does not reflect cell determination. However, the cells do become determined by the beginning of gastrulation.  相似文献   

4.
We examined the timing and mechanisms of mesodermal and neural determination in Cynops , using the secondary embryo induced by transplantation of the prechordal endomesoderm. Two unique approaches were used: one was to observe gastrulation movements induced by the graft, and the other to measure the volumes of formed tissues. Transplanted graft pulled host animal cap cells inside to form a new notochord and other mesoderm of the secondary embryo, showing determination of mesoderm during gastrulation. The graft attained a certain width beneath the host ectoderm and moved near to the animal pole of the host by late gastrula, and a neural plate, which had a similar width to the graft, was formed covering the graft. The volume of neural tissues of the secondary embryo at tail-bud stages was about half that of the normal embryo, while the volumes of notochord were comparable in each case. These data suggest that prechordal endomesoderm, rather than notochord, determines the limit of neural plate in the overlying ectoderm. Similar dorsal grafts were transplanted at early gastrula in Xenopus but did not form well developed secondary embryos, demonstrating that the timing and mechanisms of mesoderm formation in Xenopus are different from those in Cynops .  相似文献   

5.
6.
7.
Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.  相似文献   

8.
This paper describes a continuing effort to define the location and mode of action of morphogenetic determinants which direct the development of dorsal body axis structures in embryos of the frog Xenopus laevis. Earlier results demonstrated that presumptive endodermal cells in one vegetal quadrant of the 64-cell embryo can, under certain experimental conditions, induce partial or complete body axis formation by progeny of adjacent equatorial cells. (R.L. Gimlich and J.C. Gerhart, 1984, Dev. Biol. 104, 117-130). I have now assessed the importance of other blastomeres for embryonic axis formation in a series of transplantation experiments using cells from the equatorial level of the 32-cell embryo. The transplant recipients were embryos which had been irradiated with ultraviolet light before first cleavage. Without transplantation, embryos failed to develop the dorsal structures of the embryonic body axis. However, cells of these recipients were competent to respond to inductive signals from transplanted tissue and to participate in normal embryogenesis. Dorsal equatorial cells, but not their lateral or ventral counterparts, often caused partial or complete body axis development in irradiated recipients, and themselves formed much of the notochord and some prechordal and somitic mesoderm. These are the same structures that they would have formed in the normal donor. Thus, the dorsal equatorial blastomeres were often at least partially autonomous in developing according to their prospective fates. In addition, they induced progeny of neighboring host cells to contribute to the axial mesoderm and to form most of the central nervous system. The frequency with which such transplants caused complete axis formation in irradiated hosts increased when they were made at later and later cleavage stages. In contrast, the inductive activity of vegetal cells remained the same or declined during the cleavage period. These and other results suggest that the egg cytoplasmic region containing "axial determinants" is distributed to both endodermal and mesodermal precursors in the dorsal-most quadrant of the early blastula.  相似文献   

9.
A frozen section technique for frog oocytes was developed without using any organic solvent. It was applied to examine the distribution of acidic glycosphingolipids (ganglioside GM1 and sulfatide) in Xenopus oocytes, eggs and embryos by indirect immunofluorescence microscopy with specific monoclonal antibodies against the acidic glycolipids. Although glycolipids are generally present on the cell surface, GM1 and sulfatide were distributed in the cytoplasm of animal and vegetal hemispheres, respectively, of the fully grown oocytes and oviposited and fertilized eggs. In blastula, GM1 was present on the cell boundaries and in the Golgi of the blastomeres of animal hemisphere and marginal zone, whereas the staining of the outermost layer of animal blastomeres became faint or negligible at stage 9. Sulfatide in blastula was still observed in vegetal blastomeres. In gastrula, GM1 was distributed in the inner layer of ectoderm and the involuting mesoderm. In neurula, GM1 was concentrated in the dorsal midline including the closing neural tube, notochord and somites, while sulfatide was present in endoderm. The unique distribution of GM1 and sulfatide in oocytes, eggs and early embryos may help to elucidate one aspect of the biochemical bases laid on the animal–vegetal polarity.  相似文献   

10.
A full-length FoxQ-related gene (AmphiFoxQ2) was isolated from amphioxus. Expression is first detectable in the animal/anterior hemisphere at the mid blastula stage. The midpoint of this expression domain coincides with the anterior pole of the embryo and is offset dorsally by about 20 degrees from the animal pole. During the gastrula stage, expression is limited to the anterior ectoderm. By the early neurula stage, expression remains in the anterior ectoderm and also appears in the adjacent anterior mesendoderm. By the early larval stages, expression is detectable in the anteriormost ectoderm and in the rostral tip of the notochord. AmphiFoxQ2 is never expressed anywhere except at the anterior tip of amphioxus embryos and larvae. This is the first gene known that exclusively marks the anterior pole of chordate embryos. It may, therefore, play an important role in establishing and/or maintaining the anterior/posterior axis.  相似文献   

11.
 Injections of lucifer yellow and fluorescein dyes into loach (Misgurnus fossilis) and zebrafish (Danio rerio) embryos were used to analyse the intercellular communication via gap junctions (GJs) and their role in morphogenetic processes during the period from early blastula to late gastrula. It is shown that the efficiency of dye transfer between the superficial blastomeres increases by the late blastula stage. Blastomeres of the basal layer, on the other hand, become gradually uncoupled from the yolk cell (YC). This process is spatially uneven and finishes by the late gastrula stage. Prior to it, at the early epiboly stage, a local increase in dye transfer is observed in the circular zone of the blastoderm margin. During gastrulation, GJ communication between blastomeres and the YC in this zone and also in the newly-formed germ ring region (the prospective mesoderm domain) persists for a longer period of time (up to the stage of 60–70% epiboly) than in the remaining part of the basal layer (the prospective ectoderm domain). Taking into account the data on changes in the adhesive properties of blastomeres during normal development and observations on embryos with retarded epiboly, we hypothesize that changes in GJ communication between superficial blastomeres, on one hand, and between basal blastomeres and the YC, on the other, are the consequences of the same, more general morphogenetic process of compaction occurring within the blastoderm, which supports epiboly and is probably responsible for the distinction between mesodermal and ectodermal fates of cells differently located within the forming epithelioid sheet. Received: 18 October 1996 / Accepted: 4 April 1997  相似文献   

12.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

13.
We describe a technique for producing germ-line chimeric rainbow trout, Oncorhynchus mykiss, by microinjection of the isolated blastomeres. FITC-labeled donor cells and non-labeled recipient embryos at various developmental stages between the early blastula and early gastrula stages were used for cell transplantation. The chimera formation rate and the degree of donor cell distribution in recipient embryos were evaluated at both the late gastrula stage (5 days post fertilization (dpf)) and the 40-somite stage (10 dpf). Among the six combinations of developmental stages of donor and recipient embryos, the combination of midblastula (2.5 dpf) donor cells and early blastula (1.5 dpf) recipient embryos gave the highest chimera formation rate and the best distribution pattern of donor cells. Using this combination, chimeric rainbow trout were produced with donor blastomeres from dominant orange-colored mutant embryos and wild-type recipient embryos. Of the 238 chimeric embryos produced, 28 (12%) hatched normally and 14 of the 28 fry (50%) had donor-derived orange body color. To test for germ-line transmission of donor cells, gametes obtained from the matured chimeras were fertilized with gametes from wild-type fish. Of the 19 matured chimeras, 6 (32%) yielded donor-derived orange-colored progeny, in addition to wild-type siblings. The contribution rates of donor cells in the germ-line ranged from 0.3 to 14%. This technique for producing germ-line chimeras should be a powerful tool for cell-mediated gene transfer in rainbow trout. Especially, if body color mutants are used for either donor cells or the host embryos, it will be possible to easily concentrate F1 transgenic embryos derived from transplanted donor cells by body color screening. Mol. Reprod. Dev. 59: 380-389, 2001.  相似文献   

14.
In Pleurodeles waltlii isolated embryonic cells, labelled with tritiated thymidine, were injected into a recipient embryo at the blastula stage. Three types of combinations were studied. Transplanted cells belonging to the presumptive ectoderm, endoderm and mesoderm were taken when the donor embryos were at the young gastrula stage. In each experimental series, localization and distribution of labelled donor cells in the host were analyzed by autoradiographic techniques.  相似文献   

15.
The vertebrate body plan arises during gastrulation, when morphogenetic movements form the ectoderm, mesoderm, and endoderm. In zebrafish, mesoderm and endoderm derive from the marginal region of the late blastula, and cells located nearer the animal pole form the ectoderm [1]. Analysis in mouse, Xenopus, and zebrafish has demonstrated that Nodal-related proteins, a subclass of the TGF-beta superfamily, are essential for mesendoderm development [2], but previous mutational studies have not established whether Nodal-related signals control fate specification, morphogenetic movements, or survival of mesendodermal precursors. Here, we report that Nodal-related signals are required to allocate marginal cells to mesendodermal fates in the zebrafish embryo. In double mutants for the zebrafish nodal-related genes squint (sqt) and cyclops (cyc) [3] [4] [5], dorsal marginal cells adopt neural fates, whereas in wild-type embryos, cells at this position form endoderm and axial mesoderm. Involution movements characteristic of developing mesendoderm are also blocked in the absence of Nodal signaling. Because it has been proposed [6] that inhibition of Nodal-related signals promotes the development of anterior neural fates, we also examined anteroposterior organization of the neural tube in sqt;cyc mutants. Anterior trunk spinal cord is absent in sqt;cyc mutants, despite the presence of more anterior and posterior neural fates. These results demonstrate that nodal-related genes are required for the allocation of dorsal marginal cells to mesendodermal fates and for anteroposterior patterning of the neural tube.  相似文献   

16.
17.
The property of primordial germ cells (PGCs) in fragmented goldfish embryos was investigated. When 1- and 2- cell embryos were cut at several perpendicular levels at the animal-vegetal axis, cells expressing vas mRNA were observed in the resultant embryos derived from all kinds of animal fragments. Blastodisc fragments from the 1- to 2-cell stage developed to spherical embryos containing yolk body with a yolk syncytial layer (YSL). Germ ring and no tail expression were not observed in the spherical embryo. When the spherical embryo labeled with tracer dye or GFP-nos1 3'UTR mRNA was transplanted onto the animal part of the blastoderm in a host embryo at the blastula stage, PGCs of spherical embryo origin were detected around the gonadal ridges in the resultant embryos which developed normally. These results suggest that small animal fragments should contain factors sufficient for PGC differentiation and that PGCs differentiate without mesoderm induction, since mesoderm is not induced in a spherical embryo.  相似文献   

18.
19.
The existence of mesodermal determinants in the equator of Bufo arenarum embryos has been previously demonstrated. In this work, their role in dorso-ventral regionalization of mesoderm was studied by transferring the determinants to animal blastomeres. The transfer was performed by cleavage reorientation and cytoplasmic microinjection. Forced inclination during early cleavage caused deviation of the third cleavage plane and annexation of equatorial cytoplasm into animal quartets. Animal blastomeres from embryos oriented with the dorsal side up, incorporated ventro-equatorial cytoplasm and formed blood cells, mesenchyme, and coelomic epithelium. In contrast, animal blastomeres from embryos oriented with the ventral side up, acquired dorso-equatorial cytoplasm and developed notochord, somites, mesenchyme, coelomic epithelium and nervous tissue. In order to investigate if this dorso-ventral differentiation pattern responds to an interaction of mesodermal and axial factors, isolated 8-cell-stage animal quartets were microinjected with subcortical cytoplasm from: (a) the ventro-equatorial region of synchronous embryos; (b) the vegetal pole of uncleaved eggs; (c) a combination of both cytoplasms. As expected, the implanted ventro-equatorial cytoplasm promoted ventral mesoderm differentiation. Conversely, the joint transfer of ventro-equatorial cytoplasm and vegetal pole cytoplasm behaved as the dorso-equatorial cytoplasm, promoting dorso-lateral mesoderm and neural formation. Thus, mesoderm regionalization in B. arenarum embryos seems to be caused by a concurrent action of both mesodermal and axial determinants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号