首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of myoplasm-enriched ascidian embryos   总被引:3,自引:0,他引:3  
The fertilized ascidian egg is thought to be comprised of distinct regions of tissue-specific cytoplasmic determinants. This idea was tested by bisecting fertilized eggs into egg fragments and culturing them until the unoperated controls developed into larvae. Fertilized eggs were bisected using a microsurgical method in which part of the uncleaved zygote was extruded through a hole made in the follicular envelope and the cytoplasmic bridge between the two egg regions was severed. One egg fragment contained all of the egg myoplasm (termed myoplasm-enriched or ME fragment), while the other fragment lacked myoplasm. ME fragments consisting of 40-50% of the total egg volume in many cases cleaved normally and developed into larvae. In a few cases, ME larvae initiated metamorphosis and developed into normal juveniles. Triton-extraction of ME embryos and larvae showed that the myoplasm was redistributed into nonmuscle lineage cells at each stage of development. Despite the redistribution of myoplasm into many of the endoderm cells situated in the head region of ME larvae, the expression of the muscle-specific enzyme acetylcholinesterase (AchE) and a muscle-specific antigen (Mu-2) was restricted to the tail muscle cells. The endoderm cells situated in the head region of ME larvae expressed an endoderm-specific enzyme alkaline phosphatase (AP) as in the controls. Furthermore, cleavage-arrested four- and eight-cell ME embryos expressed AchE activity in the expected number of blastomeres. When a greater quantity of myoplasm was redistributed into cells that normally do not express AchE activity by producing 10-30% ME embryos, in a few cases more than the expected number of blastomeres expressed AchE activity. In conclusion, the main finding of the present investigation, based on the development of ME fragments comprising 40-50% of the total egg volume, is that ascidian embryos are capable of regulative development.  相似文献   

2.
The ascidian egg contains muscle and endoderm determinants that play critical roles in the specification of muscle and endoderm cells, respectively. Endoderm cells of the ascidian embryo express alkaline phosphatase (AP) as a tissue-specific enzyme. We obtained egg fragments from the unfertilized eggs of Ciona savignyi by means of centrifugal force. The largest fragment (red fragments) contained the egg nucleus while other small fragments (black, clear and brown fragments) were anucleate. When inseminated, only red fragments developed into partial embryos, which showed only epidermis cell differentiation and, very rarely, AP activity. When red fragments were fused with other fragments, only black fragments promoted AP expression, suggesting that endoderm determinants were concentrated in the black fragments. A lower dose (1500 J/m2) of ultraviolet (UV) light did not eliminate the AP-promoting ability of black fragments, while this dose significantly repressed the ability to promote the expression of the muscle-marker. A higher dose (4500 J/m2) of UV light markedly reduced the AP-promoting activity of black fragments. These results suggest that factors for endodermal AP development are inactivated by UV irradiation, but are more resistant than muscle determinants.  相似文献   

3.
The ascidian egg contains cytoplasmic determinants that specify the fate of larval muscle cells. In a previous study, we developed an experimental system to identify the molecular nature of muscle determinants, in which unfertilized Ciona savignyi eggs were fragmented into four pieces by centrifugation. When inseminated, only nucleated fragments (red fragments) develop into partial embryos that only show differentiation of epidermal cells. One type of enucleated fragment (black fragment) has the remarkable ability to promote muscle differentiation when fused with red fragments. In the present study, using this experimental system, we investigated the molecular nature of muscle determinants. UV irradiation of black fragments suppressed the ability to promote expression of the muscle-specific protein, myosin heavy chain. The wavelength of UV light responsible for the inactivation (250–275 nm) suggested that UV-sensitive targets are nucleic acids. Injection of poly(A)+ RNA isolated from an un-irradiated black-fragment-rich fraction into UV-irradiated black fragments partially recovered the ability to promote the expression of myosin heavy chain protein. Poly(A)+ RNA from a red-fragment-rich fraction did not rescue the suppression of UV-irradiated black fragments. These results suggest that maternal mRNAs enriched in black fragments are closely associated with muscle determinants in the ascidian egg.  相似文献   

4.
The egg of the ascidian Ciona savignyi is pinkish red with brownish myoplasm that contains the putative determinants responsible for differentiation of muscle cells. When dechorionated unfertilized eggs were centrifuged at moderate speed, eggs were divided into centripetal, small gray fragments and centrifugal, large red fragments. The former contained the female pronucleus and clear cytoplasm, while most of the latter was filled with yolk granules. An antibody raised against the myoplasm of C. intestinalis eggs extensively stained the cortical region of gray fragments, while the antibody stained only small regions of the red fragments. After insemination, both fragments cleaved and gave rise to partial embryos. When development of muscle and epidermal cells in the partial embryos was examined with specific antibodies, muscle development was conspicuous in gray partial embryos, while epidermal differentiation was extensive in red partial embryos. Furthermore, when expression of markers of differentiation was examined in cleavage-arrested gray and red fragments, the number of arrested gray fragments exhibiting the muscle marker was about three-fold greater than in controls. These results suggest that putative muscle determinants are concentrated into gray fragments.  相似文献   

5.
The cortex of Chaetopterus eggs contains a cytoskeletal domain (CD) which includes a specific class of dense granular organelles and a large proportion of the maternal mRNA. This CD, along with its constituent dense granular organelles and mRNA, can be displaced to atypical locations in the egg by centrifugation. To investigate the developmental significance of the CD, we have examined the early development of egg and zygote fragments, prepared by centrifugation, which contained the CD, the nucleus, or both. Specifically, we prepared nucleate egg and zygote fragments depleted in the CD, and two-cell embryos in which the CD was present in only one cell. Nucleate centripetal egg fragments were both unable to develop after fertilization and were depleted in the CD, as shown by electron microscopy, acridine orange staining of cortical organelles, and hybridization with poly(U) and cloned DNA probes. In contrast, about 20-35% of the nucleate centripetal fragments derived from one-cell zygotes developed into swimming larva. Correlated with this improved success of development, we found that these zygotic centripetal fragments contained significant levels of the CD, using the same methods listed above. More effective removal of the CD from zygotic centripetal fragments by stratification prior to fragmentation virtually eliminated their ability to develop. The CD and associated components could be displaced into only one of the first two blastomeres by centrifugation of zygotes immediately prior to the first cleavage. Embryos containing the CD in only one blastomere continued to cleave, but formed defective larva. The results suggest that the cortical CD is necessary for normal embryonic development.  相似文献   

6.
In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to address this issue directly. Therefore the present study examined the developmental role of HNF-3 in ascidian notochord differentiation. When embryos were injected with a low dose of HNF-3 mRNA, their tails were shortened and when embryos were injected with a high dose of HNF-3 mRNA, which was enough to inhibit differentiation of epidermis and muscle, no obvious ectopic differentiation of endoderm or notochord cells was observed. However, co-injection of HNF-3 mRNA along with Brachyury mRNA resulted in ectopic differentiation of notochord cells in the animal hemisphere, suggesting that HNF-3 acts synergistically with Brachyury in ascidian notochord differentiation. Notochord differentiation of the A-line precursor cells depends on inducing signal(s) from endodermal cells, which can be mimicked by bFGF treatment. Treatment of notochord precursor cells isolated from the 32-cell stage embryoswith bFGF resulted in upregulation of both the HNF-3 and Brachyury genes.  相似文献   

7.
The union between a sperm and an egg nucleus in egg fertilization is necessary to mix genetic materials to create a new diploid genome for the next generation. In most animals, only one sperm is incorporated into the egg (monospermy), but several animals exhibit physiological polyspermy in which several sperms enter the egg during normal fertilization. However, only one sperm nucleus forms the zygote nucleus with the egg nucleus, even in a polyspermic egg. The cellular and molecular mechanisms involved in the selection of sperm nuclei in the egg cytoplasm have been well investigated in urodele amphibians. The principal sperm nucleus develops a larger sperm aster and contacts the egg nucleus to form a zygote nucleus, whereas other accessory sperm nuclei are unable to approach the egg nucleus. The diploid zygote nucleus induces cleavage and participates in embryonic development, whereas the accessory sperm nuclei undergo pyknosis and degenerate. We propose several models to account for the mechanisms of the selection of one sperm nucleus and the degeneration of accessory sperm nuclei. The roles of physiological polyspermy in animal reproduction are discussed by comparison with other polyspermic species.  相似文献   

8.
5-azacytidine (5-azaCR), an analogue of cytidine, inhibits nuclear DNA methylation in early sea urchin embryos. This inhibition is specific and dose-dependent. Exposure of sea urchin embryos at any stage between one-cell and blastula, to micromolar quantities of 5-azaCR invariably inhibits development beyond the blastula stage. In a substantial number of embryos arrested at the blastula stage, spicule formation proceeds although other morphological differentiation is lacking. No significant effect on development is seen if sea urchin embryos are exposed to 5-azaCR at post-blastula stages. 5-azaCR also inhibits the development of a mosaic egg such as the ascidian Phallusia mammilata at the blastula stage, indicating that both regulative (sea urchin) and mosaic (ascidian) embryos respond more or less similarly to 5-azaCR treatment.  相似文献   

9.
10.
11.
Summary Initially, each tissue-progenitor blastomere of embryos of the ascidian Halocynthia was identified and isolated manually at the 110-cell (late-blastula) stage, the time at which most of the blastomeres have assumed a particular fate, such that each gives rise to a single type of tissue. The isolates were allowed to develop as partial embryos, then tissue differentiation was examined by monitoring the expression of specific molecular markers for differentiation of epidermis, endoderm, muscle and notochord. Essentially, all of the precursor blastomeres of these four kinds of tissue expressed the appropriate features of tissue differentiation in isolation, indicating that determination is already complete in most of the blastomeres by the 110-cell stage. Next, in order to evaluate the absolute capacity of cells for autonomous development, embryos were maintained continuously in a dissociated state from the first cleavage to the 110-cell stage, then the cells were allowed to develop into partial embryos. Tissue differentiation in the partial embryos was examined. The results showed the striking autonomy of the processes of segregation of developmental potential, as well as the autonomy of the processes of expression of differentiated phenotypes, namely those of epidermis and endoderm. Autonomous muscle differentiation was also observed; however, excess formation of muscle partial embryos occurred. The hypothesis that fate determination is mediated by localized maternal information in the egg cytoplasm is supported by the evidence of development of these tissues. By contrast, no evidence of notochord differentiation was observed in the partial embryos.  相似文献   

12.
We have observed ultrastructural features of muscle differentiation in the muscle lineage cells of cleavage-arrested whole embryos and partial embryos of ascidians. Whole embryos of Ciona intestinalis and Ascidia ceratodes were cleavage-arrested with cytochalasin B at the 8-cell stage and reared to an age equivalent to several hours after hatching; these embryos formed extensive myofilaments which were often further organized into myofibrils of different sizes and densities in the peripheral cytoplasm of the two muscle lineage blastomeres (B4.1 pair). Developing myofibrils in cleavage-arrested embryos resembled the muscle elements observed in normal hatched larvae, but were less uniformly organized. A similar development of myofilaments and myofibrils occurred in the muscle lineage cells of multicellular partial embryos reared to "hatching" age. These partial embryos resulted from the isolated muscle lineage pair (B4.1) of blastomeres of the 8-cell stage (Ciona and Ascidia), and from a muscle lineage blastomere pair (B5.2) isolated at the 16-cell stage (Ascidia). Muscle lineage cells in the partial embryos were readily identified by the dense aggregates of mitochondria in their cytoplasm. Taken together, these results from the two kinds of partial embryo effectively eliminate inductive interactions with embryonic tissues other than mesodermal as a necessary factor in the onset of self-differentiation in muscle lineage cells. The relative complexity of muscle phenotype expressed in cleavage-arrested and partial embryos attests to an unusually strong developmental autonomy in the ascidian muscle lineages. This autonomy lends further support to the theory that a localized and segregated egg cytoplasmic determinant is responsible for larval muscle development in ascidian embryos.  相似文献   

13.
14.
15.
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.  相似文献   

16.
In the scorpion Liocheles australasiae, egg maturation and parthenogenetic recoveries of chromosome number and nuclear DNA content were examined by histological, karyological observations and quantitative measurements of DNA. The primary oocyte becomes mature through two successive maturation divisions. The first maturation division takes place in the primary oocyte to produce a secondary oocyte and a first polar body. The second maturation division soon occurs in the secondary oocyte, in which the nucleus is divided into a mature egg nucleus and a second polar body nucleus, not followed by cytoplasmic fission. The first polar body, in one case, was successively divided into two second polar bodies; in the other case it was not divided. In either case, these polar bodies remained attached to the early embryo. The fate of these polar bodies during further embryogenesis were studied. In the karyological analysis, the chromosome number was divided into two groups, one from 27-32, the other was 54-64. The former was presumably the metaphase chromosome number at the meiotic division; the latter was presumably the metaphase chromosome number at the mitotic division. DNA content in the diploid nucleus of the primary oocyte, doubled before the maturation divisions, was reduced through the maturation divisions by one-half in the nuclei of the secondary oocyte and the first polar body and by one-fourth in the nuclei of the egg and the second polar bodies. The first reduction of DNA content corresponded to halving the number of the chromosomes in the first maturation division and the second to the nuclear division in the secondary oocyte. These reductions represent a common process of egg maturation, except the final production of the mature egg with two haploid nuclei, an egg nucleus, and a second polar body nucleus. These two nuclei, which were formed apart in the mature egg, drew near to fuse into a zygote nucleus. The chromosome number and nuclear DNA content were doubled in the zygote and each blastomere in embryos, supporting the hypothesis that the egg nucleus fuses with the second polar body nucleus and this conjugation initiates subsequent embryonic development.  相似文献   

17.
18.
Multiple states of differentiation developed within the same undivided egg cytoplasm of ascidian zygotes cleavage-arrested with cytochalasin B. Complex ultrastructural traits of up to four quite diverse cell lineage components were observed in regions of the common cytoplasm in such multinucleate homokaryons of Ciona intestinalis: epidermal, muscle, notochordal, and neural. Almost all specimens among those selected as showing differentiation contained two such features, half of them had at least three, and a few expressed all four. The histospecific morphological characteristics noted were the extracellular test material of epidermal cell origin, muscle myofilaments and myofibrils, sheath components (leaflets and filaments) associated with notochordal cells, and the particular localized combinations of microtubules, filamentous structures, and cilia indicative of neural tissues. Cleavage-arrested one-celled embryos of Ascidia ceratodes served to demonstrate that those which were found cytochemically to contain muscle acetylcholinesterase always had myofibrils and myofilaments. Other arrested zygotes of Ascidia (unstained specimens) also had quite fully formed test material as well as myofilaments and myofibrils. The occurrence within the same cell of so many specific markers of diverse pathways of development is consistent with a theory about a primary level of regulation based on autonomous gene activation factors already present in the fertilized egg. If further investigation substantiates a real cytoplasmic continuity within these cleavage-arrested embryos, other theories that invoke cell interactions, temporal sequences of metabolically distinct microenvironments, and gradients of substances as causes of determinative change seem inadequate to account for the coexisting expressions of differentiation described here.  相似文献   

19.
20.
番茄受精作用及其间隔期的研究   总被引:1,自引:0,他引:1  
王秋红  申家恒 《植物研究》2005,25(3):289-297
利用常规石蜡切片法研究了番茄受精作用的全过程,具体研究结果为:(1)授粉后2 h,花粉粒在柱头上萌发;约2~4 h,花粉管长入柱头,且末端膨大;约8 h后,生殖细胞进入分裂期;并于约两小时后,分裂为两个精细胞。(2)约14 h,花粉管进入子房腔;约18~24 h,花粉管进入胚囊,破坏一个助细胞,并在其珠孔端释放两个精子;随后被释放的精子移到卵细胞与次生核附近。(3)授粉后约30 h精核进入卵细胞;约34 h,精核与卵核融合,并在卵核内出现分散的雄性染色质,进而出现雄性核仁;44~50 h,雌、雄性核仁融合,形成合子;合子的休眠期为10 h左右。60 h之后,合子分裂形成二细胞原胚。(4)约26 h,另一个精子的精核与次生核核膜相贴伏,随后与之融合;约30~34 h,次生核内出现分散的雄性染色质,随之出现雄性核仁;约38~42 h,雌、雄性核仁融合,形成初生胚乳核。约44 h后,初生胚乳核进行有丝分裂,形成两个胚乳细胞。番茄胚乳发育属于细胞型。初生胚乳核无休眠期。(5)精子与次生核的融合比与卵核的融合快。(6)番茄的受精作用属于有丝分裂前配子融合类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号