首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of acetate assimilation by the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate shunt, has been studied. In a previous work, proceeding from data on acetate assimilation by Rba. sphaeroides cell suspensions, a suggestion was made regarding the operation, in this bacterium, of the citramalate cycle. This cycle was earlier found in Rhodospirillum rubrum in the form of an anaplerotic reaction sequence that operates during growth on acetate instead of the glyoxylate shunt, which is not present in the latter bacterium. The present work considers the enzymes responsible for acetate assimilation in Rba. sphaeroides. It is shown that this bacterium possesses the key enzymes of the citramalate cycle: citramalate synthase, which catalyzes condensation of acetyl-CoA and pyruvate and, as a result, forms citramalate, and 3-methylmalyl-CoA lyase, which catalyzes the cleavage of 3-methylmalyl-CoA to glyoxylate and propionyl-CoA. The regeneration of pyruvate, which is the acetyl-CoA acceptor in the citramalate cycle, involves propionyl- CoA and occurs via the following reaction sequence: propionyl-CoA (+CO2) å methylmalonyl-CoA å succinyl-CoA å succinate å fumarate malate å oxaloacetate (−CO2) å phosphoenolpyruvate å pyruvate. The independence of the cell growth and the acetate assimilation of CO2 is due to the accumulation of CO2/HCO 3 (released during acetate assimilation) in cells to a level sufficient for the effective operation of propionyl-CoA carboxylase.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 319–328.Original Russian Text Copyright © 2005 by Filatova, Berg, Krasil’nikova, Ivanovsky.  相似文献   

2.
The mechanism of acetate assimilation in the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate pathway, is studied. It is found that the growth of this bacterium in batch and continuous cultures and the assimilation of acetate in cell suspensions are not stimulated by bicarbonate. The consumption of acetate is accompanied by the excretion of glyoxylate and pyruvate into the medium, stimulated by glyoxylate and pyruvate, and inhibited by citramalate. The respiration of cells in the presence of acetate is stimulated by glyoxylate, pyruvate, citramalate, and mesaconate. These data suggest that the citramalate cycle may function in Rba. sphaeroides in the form of an anaplerotic pathway instead of the glyoxylate pathway. At the same time, the low ratio of fixation rates for bicarbonate and acetate exhibited by the Rba. sphaeroides cells (approximately 0.1), as well as the absence of the stimulatory effect of acetate on the fixation of bicarbonate in the presence of the Calvin cycle inhibitor iodoacetate, suggests that pyruvate synthase is not involved in acetate assimilation in the bacterium Rba. sphaeroides.  相似文献   

3.
Rhodospirillum rubrum is among the bacteria that can assimilate acetate in the absence of isocitrate lyase, the key enzyme of glyoxylate shunt. Previously we have suggested the functioning of a new anaplerotic cycle of acetate assimilation in this bacterium: citramalate cycle, where acetyl-CoA is oxidized to glyoxylate. This work has demonstrated the presence of all the key enzymes of this cycle in R. rubrum extracts: citramalate synthase catalyzing condensation of acetyl-CoA and pyruvate with the formation of citramalate, mesaconase forming mesaconate from L-citramalate, and the enzymes catalyzing transformation of propionyl-CoA + glyoxylate 3-methylmalyl-CoA ? mesaconyl-CoA. At the same time, R. rubrum synthesizes crotonyl-CoA carboxylase/reductase, which is the key enzyme of ethylmalonyl-CoA pathway discovered recently in Rhodobacter sphaeroides. Physiological differences between the citramalate cycle and the ethylmalonyl-CoA pathway are discussed.  相似文献   

4.
The mechanism of acetate assimilation by the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate shortcut, has been studied. In a previous work, proceeding from data on acetate assimilation by Rba. sphaeroides cell suspensions, a suggestion was made regarding the operation, in this bacterium, of the citramalate cycle. This cycle was earlier found in Rhodospirillum rubrum in the form of an anaplerotic reaction sequence that operates during growth on acetate instead of the glyoxylate shortcut, which is not present in the latter bacterium. The present work considers the enzymes responsible for acetate assimilation in Rba. sphaeroides. It is shown that this bacterium possesses the key enzymes of the citramalate cycle: citramalate synthase, which catalyzes condensation of acetyl-CoA and pyruvate and, as a result, forms citramalate, and 3-methylmalyl-CoA lyase, which catalyzes the cleavage of 3-methylmalyl-CoA to glyoxylate and propionyl-CoA. The regeneration of pyruvate, which is the acetyl-CoA acceptor in the citramalate cycle, involves propionyl-CoA and occurs via the following reaction sequence: propionyl-CoA (+ CO2) --> methylmalonyl-CoA --> succinyl-CoA --> succinate --> fumarate --> malate --> oxalacetate (- CO2) --> phosphoenolpyruvate --> pyruvate. The independence of the cell growth and the acetate assimilation of CO2 is due to the accumulation of CO2/HCO3- (released during acetate assimilation) in cells to a level sufficient for the effective operation of propionyl-CoA carboxylase.  相似文献   

5.
Two isoforms of malate dehydrogenase (MDH), dimeric and tetrameric, have been found in the purple non-sulfur bacterium Rhodobacter sphaeroides strain 2R, devoid of the glyoxylate shunt, which assimilate acetate via the citramalate cycle. Inhibitory analysis showed that the 74-kDa protein is involved in tricarboxylic acid cycle, while the 148-kDa MDH takes part in the citramalate pathway. A single gene encoding synthesis of the isologous subunits of the MDH isoforms was found during molecular-biological investigations. The appearance in the studied bacterium of the tetrameric MDH isoform during growth in the presence of acetate is probably due to the increased level of mdh gene expression, revealed by the real-time PCR, the product of which in cooperation with the citramalate cycle enzymes plays an important role in acetate assimilation.  相似文献   

6.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

7.
The mechanism of the dark assimilation of acetate in the photoheterotrophically grown nonsulfur bacterium Rhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation in Rsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle in Rsp. rubrum cells grown aerobically in the dark can function as an anaplerotic pathway. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicative that citramalate and mesaconate are intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts of Rsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function in Rsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

8.
Rhodobacter sphaeroides ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deletion strain 16 was capable of photoheterotrophic growth with acetate, while Rhodopseudomonas palustris RubisCO-deletion strain 2040 could not grow under these conditions. The reason for this difference lies in the fact that Rba. sphaeroides and Rps. palustris use different pathways for acetate assimilation, the ethylmalonyl-CoA pathway, and glyoxylate-bypass cycle, respectively. The ethylmalonyl-CoA pathway is distinct from the glyoxylate cycle as one molecule of CO2 and one molecule of HCO3 per three molecules of acetyl-CoA are co-assimilated to form two malate molecules. The glyoxylate cycle directly converts two acetyl-CoA molecules to malate. Each pathway, therefore, also dictates at what point, CO2 and reductant are consumed, thereby determining the requirement for the Calvin–Benson–Bassham reductive pentose phosphate cycle.  相似文献   

9.
The cells of Ectothiorhodospira were cultivated under autotrophic conditions and assimilated 14C-acetate in the presence of bicarbonate. The label was incorporated rapidly into phosphoglyceric acid (PGA) and phosphorous esters (PE) of sugars, into compounds of the tricarboxylic acid cycle (TAC), aspartate, glutamate. After some time the content of the label became the highest in glutamate and decreased in other compounds. The same products were formed upon the assimilation of acetate by the cells cultivated in its presence. However, the amount of PGA and PE of sugars, especially those formed in the presence of sulphides, was less, and their curve had a positive slope. Fluoroacetate inhibited the incorporation of 14C from acetate in the cells and caused an increase of labeled citrate. Iodacetate inhibited almost completely the fixation of CO2 by the cells in the presence of sulphide; the fixation of carbon dioxide constituted about 60 percent of the control if both sulphide and acetate were present in the medium. Therefore, the assimilation of acetate by Ect. shaposhnikovii can be accomplished via the glyoxylate shunt and TAC, and also as a result of action of pyruvate synthase and the production of C4- and C5-organic acids with the participation of CO2. The pathways of acetate metabolism depend on the growth conditions and on the presence of sulphide in the medium.  相似文献   

10.
11.
A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus   总被引:3,自引:0,他引:3  
Phototrophic CO(2) assimilation by the primitive, green eubacterium Chloroflexus aurantiacus has been shown earlier to proceed in a cyclic mode via 3-hydroxypropionate, propionyl-CoA, succinyl-CoA, and malyl-CoA. The metabolic cycle could be closed by cleavage of malyl-CoA affording glyoxylate (the primary CO(2) fixation product) with regeneration of acetyl-CoA serving as the starter unit of the cycle. The pathway of glyoxylate assimilation to form gluconeogenic precursors has not been elucidated to date. We could now show that the incubation of cell extract with a mixture of glyoxylate and [1,2,3-(13)C(3)]propionyl-CoA afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalate and [1,2,2'-(13)C(3)]citramalate. Similar experiments using a partially purified protein fraction afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalyl-CoA and [1,2,2'-(13)C(3)]mesaconyl-CoA. Cell extracts of C. aurantiacus were also shown to catalyze the conversion of citramalate into pyruvate and acetyl-CoA in a succinyl-CoA-dependent reaction. The data suggest that glyoxylate obtained by the cleavage of malyl-CoA can be utilized by condensation with propionyl-CoA affording erythro-beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. This reaction sequence regenerates acetyl-CoA, which serves as the precursor of propionyl-CoA in the 3-hydroxypropionate cycle. Autotrophic CO(2) fixation proceeds by combination of the 3-hydroxypropionate cycle with the methylmalyl-CoA cycle. The net product of that bicyclic autotrophic CO(2) fixation pathway is pyruvate serving as an universal building block for anabolic reactions.  相似文献   

12.
In this work, the influence of the crystallographic water on electron transfer between primary donor P and acceptor BA was studied in reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides and the green bacterium Chloroflexus aurantiacus. For this purpose, time constants and oscillations of charge separation kinetics are compared between dry film RCs and RCs in glycerol-water buffer at 90 K. A common result of the drying of Rba. sphaeroides and Cfx. aurantiacus RCs is slowing of the charge separation process, decrease in amplitude of the oscillatory components of the kinetics, and the depletion of its spectrum. Thus, the major time constant of stimulated emission decay of P* bacteriochlorophyll dimer at 940 nm is increased from 1.1 psec for water-containing Rba. sphaeroides RCs to 1.9 psec for dry films of Rba. sphaeroides RCs. An analogous increase from 3.5 to 4.2 psec takes place in Cfx. aurantiacus RCs. In dry films of Rba. sphaeroides RCs, the amplitude of coherent oscillations of the absorption band of monomeric bacteriochlorophyll BA at 1020 nm is 1.8 times less for the 130-cm−1 component and 2.3 times less for the 32-cm−1 component than the analogous amplitudes for water-containing RCs. Measurements in the analogous band of Cfx. aurantiacus RCs show that strong decrease (∼5-10 times) of the BA absorption band and strong slowing (from ∼0.8 to ∼3 psec) of BA accumulation together with ∼3-fold decrease in oscillation amplitude occurs on drying of these RCs. The overtones of the 32-cm−1 component disappeared from the oscillations of the kinetics at 940 and 1020–1028 nm after drying of the Rba. sphaeroides and Cfx. aurantiacus RCs. The results are in agreement with the results for GM203L mutant of Rba. sphaeroides, in which the HOH55 water molecule is sterically removed, and with the results for dry films of pheophytin-modified RCs of Rba. sphaeroides R-26 and for YM210W and YM210L Rba. sphaeroides mutant RCs. The data are discussed in terms of the influence (or participation) of the HOH55 water molecule on electron transfer along the chain of polar atomic groups N-Mg(PB)-N-C-N(HisM202)-HOH55-O=(BA) connecting PB and BA in Rba. sphaeroides RCs.  相似文献   

13.
The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to beta-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA --> d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route.  相似文献   

14.
We present a novel light-dependent metabolism of an aromatic compound (trans-cinnamate) that is assimilatory rather than dissimilatory. Light-dependent assimilation of trans-cinnamate was observed by both growing and resting cells of Rhodobacter sphaeroides OU5. Trans-cinnamate assimilation could be correlated with simultaneous formation of both phenylalanine and tyrosine at near-stoichiometric ratios. Trans-cinnamate assimilation was promoted by carbon source and electron donors, such as glucose, pyruvate, or α-ketoglutarate, whereas malate, succinate, fumarate, and acetate were inhibitory.  相似文献   

15.
Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area.  相似文献   

16.
Summary Cultures of Thiobacillus neapolitanus strain C assimilate 14C-labelled acetate and aspartate. Both carbon atoms of acetate are incorporated, and 25% of the cell carbon can arise from acetate. Aspartate-14C contributes 4–5% of the cell carbon, and is found in pyrimidines and in protein as aspartate and its related amino acids. Acetate-14C contributes to lipid, glutamate, arginine, proline and leucine, but not to aspartate. Acetate assimilation by washed organisms requires carbon dioxide and energy from thiosulphate oxidation. Degradation of 14C-glutamic acid from acetate-14C-labelled bacteria; the accumulation of 14C-citrate in the presence of fluoroacetate and [14C] acetate; short-term kinetic experiments on acetate-14C turnover; and the demonstration of citrate synthesis by cell-free extracts all indicate glutamate synthesis from -ketoglutarate formed by reactions of the tricarboxylic acid cycle. The cycle is believed to be incomplete, probably not proceeding further than -ketoglutarate, and functions as a glutamate-synthesising system, using oxaloacetate derived solely from carbon dioxide fixation. Malate synthase (and the glyoxylate cycle) appear to be insignificant in the metabolism, but extracts did form citramalate from acetate and pyruvate.  相似文献   

17.
Photosynthetic prokaryotes that assimilate CO2 under anoxic conditions may also grow chemolithoautotrophically with O2 as the electron acceptor. Among the nonsulfur purple bacteria, two species (Rhodobacter capsulatus and Rhodopseudomonas acidophilus), exhibit aerobic chemolithoautotrophic growth with hydrogen as the electron donor. Although wild-type strains of Rhodobacter sphaeroides grow poorly, if at all, with hydrogen plus oxygen in the dark, we report here the isolation of a spontaneous mutant (strain HR-CAC) of Rba. sphaeroides strain HR that is fully capable of this mode of growth. Rba. sphaeroides and Rba. capsulatus fix CO2 via the reductive pentose phosphate pathway and synthesize two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). RubisCO levels in the aerobic-chemolithoautotrophic-positive strain of Rba. sphaeroides were similar to those in wild-type strains of Rba. sphaeroides and Rba. capsulatus during photoheterotrophic and photolithoautotrophic growth. Moreover, RubisCO levels of Rba. sphaeroides strain HR-CAC approximated levels obtained in Rba. capsulatus when the organisms were grown as aerobic chemolithoautotrophs. Either form I or form II RubisCO was able to support aerobic chemolithoautotrophic growth of Rba. capsulatus strain SB 1003 and Rba. sphaeroides strain HR-CAC at a variety of CO2 concentrations, although form II RubisCO began to lose the capacity to support aerobic CO2 fixation at high O2 to CO2 ratios. The latter property and other facets of the physiology of this system suggest that Rba. sphaeroides and Rba. capsulatus strains may be effectively employed for the biological selection of RubisCO molecules of altered substrate specificity. Received: 8 August 1997 / Accepted: 26 December 1997  相似文献   

18.
External factors affecting the activity of isocitrate lyase (ICL) in Rhodobacter capsulatus B10 grown under controlled photoheterotrophic anaerobic conditions were investigated. The activity of this enzyme was found to depend on the history of the inoculum and on the growth phase on acetate medium. Intracellular degradation of ICL under unfavorable conditions was shown. However, transition of the growing culture from acetate to lactate did not result in active degradation of the enzyme. When transferred to acetate, Rba. capsulatus could grow without the lag phase and did not exhibit ICL activity, suggesting another anaplerotic pathway in Rba. capsulatus cells. Since emergence of the ICL activity in the cells grown on acetate results in an increase in its growth rate, the glyoxylate bypass plays an important role in acetate metabolism of Rba. Capsulatus.  相似文献   

19.
Chlorella pyrenoidosa can utilize sodium acetate as a carbonsource for growth in the light. Growth proceeds under aerobicconditions both in the presence and in the absence of carbondioxide, but under anaerobic conditions only in its presence.The assimilation of acetate does not result from oxidation tocarbon dioxide followed by photosynthetic fixation because theproducts of 14C-acetate assimilation are different from theproducts of 14CO2 fixation in the presence of unlabelled acetate. In aerobic conditions 10-6 M DCMU induces a pattern of acetateassimilation in the light similar to that in the dark. Thus,in the presence of DCMU in the light, less acetate carbon isincorporated into cells, particularly into lipids, polysaccharide,and protein, and more is released as carbon dioxide than inits absence. The effect of 4 x 10-3 M MFA on acetate assimilationin the presence of 10-6 M DCMU is the same in light and dark.Acetate assimilation is unaffected by desaspidine and sodiumbisulphite. The mean generation time of C. pyrenoidosa growing on acetatein the light under aerobic conditions is 20 hours. When 10-5M DCMU is added the mean generation time is 60 hours, the sameas that for Chlorella growing on acetate in the dark. The activityof the enzymes of the glyoxylate cycle, isocitrate lyase (E.C.4.1.3.1.)and malate synthetase (E.C.4.1.3.2.) is repressed in the light,but activity of both enzymes increases markedly when DCMU isadded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号