首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The Escherichia coli enterotoxin STII gene is carried by Tn4521. The terminal repeats of Tn4521 are composed of IS2 sequences; however, neither repeat is a complete IS2. In order to determine how this seemingly defective transposon could transpose, mutations were generated within Tn4521 to determine the regions essential for transposition. The left terminal repeat region was found to be non-essential, but the right terminal repeat area was demonstrated to be crucial for transposition. Within the right terminal repeat area is an open reading frame (ORF), capable of encoding a 159 amino acid protein, which was shown by frameshift mutation analysis to be required for transposition. This protein may be the transposase of Tn4521. A pair of 11 bp repeat sequences flanking the ORF was also found to be important. The right 11 bp repeat is part of the left IS2 terminal sequence, and the left 11 bp repeat is located about 300 bp upstream from the right IS2 terminal sequence located within the right terminal repeat region. The results of this study suggest that Tn4521 is a functional transposon and that the sequence including this pair of 11 bp sequences plus the intervening sequence is a transposable element which may be responsible for Tn4521 transposition.  相似文献   

2.
Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE.  相似文献   

3.
4.
The nucleotide sequences of insertion sequences IS3411L (left) and IS3411R (right), present as direct terminal repeats in the citrate utilization of citrate utilization transposon Tn3411, and of IS3411 (generated by intramolecular recombination between IS3411L and IS3411R) were determined. The three IS3411 elements (IS3411R, IS3411L, and IS3411) were 1,309 base pairs long and identical in DNA sequence. IS3411 had 27-base-pair terminal inverted repeats with three bases mismatched and one long open reading frame (240 amino acids) that was proposed to be a transposase. Three polypeptides of 29,000, 27,000, and about 10,000 molecular weight, determined by IS3411, were identified in minicells. Since Tn3411 generates a 3-base-pair repeat upon integration, the nucleotide sequences of IS3411 were compared with those of IS3.  相似文献   

5.
S A Khan  R P Novick 《Plasmid》1980,4(2):148-154
The erythromycin resistance determinant of Staphylococcus aureus plasmid pI258 resides on a 5.3 kb transposon, Tn551. We have determined DNA sequences surrounding the junctions between the transposon and the flanking DNA in the wild-type plasmid, in an insertion into a second plasmid, and in two transposon-related deletions. The ends of the transposon consist of an inverted repeat of 40 base pairs flanked by a direct repeat of 5, thus placing the transposon in the same class as Tn3, IS2, Tn501, gamma delta, and bacteriophage Mu. Interestingly, we find that the terminal sequences of the 40 base pairs inverted repeat are very similar to the ends of Tn3, a transposon which one would not have expected to show any relation to Tn551. This result suggests common ancestry for Tn3 and Tn551. The inverted repeat sequence of Tn551 also contains (with one additional inserted base) the internal heptanucleotide sequence which has been found to be common to most of the transposable elements that generate 5-base pair direct repeat sequences.  相似文献   

6.
We show that both flanking IS256 elements carried by transposon Tn4001 are capable of generating head-to-tail tandem copies and free circular forms, implying that both are active. Our results suggest that the tandem structures arise from dimeric copies of the donor or vector plasmid present in the population by a mechanism in which an IS256 belonging to one Tn4001 copy attacks an IS256 end carried by the second Tn4001 copy. The resulting structures carry abutted left (inverted left repeat [IRL]) and right (inverted right repeat [IRR]) IS256 ends. Examination of the junction sequence suggested that it may form a relatively good promoter capable of driving transposase synthesis in Escherichia coli. This behavior resembles that of an increasing number of bacterial insertion sequences which generate integrative junctions as part of the transposition cycle. Sequence analysis of the IRL-IRR junctions demonstrated that attack of one end by the other is largely oriented (IRL attacks IRR). Our experiments also defined the functional tips of IS256 as the tips predicted from sequence alignments, confirming that the terminal 4 bp at each end are indeed different. The appearance of these multiple plasmid and transposon forms indicates that care should be exercised when Tn4001 is used in transposition mutagenesis. This is especially true when it is used with naturally transformable hosts, such as Streptococcus pneumoniae, in which reconstitution of the donor plasmid may select for higher-order multimers.  相似文献   

7.
IS5075 and IS4321 are closely related (93.1% identical) members of the IS1111 family that target a specific position in the 38-bp terminal inverted repeats of Tn21 family transposons and that are inserted in only one orientation. They are 1,327 bp long and have identical ends consisting of short inverted repeats of 12 bp with an additional 7 bp (TAATGAG) or 6 bp (AATGAG) to the left of the left inverted repeats and 3 bp (AGA) or 4 bp (AGAT) to the right of the right inverted repeat. Circular forms of IS5075 and IS4321 in which the inverted repeats are separated by abutting terminal sequences (AGATAATGAG) were detected. A similar circular product was found for the related ISPa11. Transposition of IS4321 into the 38-bp target site was detected, but a flanking duplication was not generated. The precisely reconstituted target site was also identified. Over 50 members of the IS1111 family were identified. They encode related transposases, have related inverted repeats, and include related bases that lie outside these inverted repeats. In some, the flanking bases number 5 or 6 on the left and 4 or 3 on the right. Specific target sites were found for several of these insertion sequence (IS) elements. IS1111 family members therefore differ from the majority of IS elements, which are characterized by terminal inverted repeats and a target site duplication, and from members of the related IS110 family, which do not have obvious inverted repeats near their termini.  相似文献   

8.
9.
SLP2 is a 50 kb linear plasmid in Streptomyces lividans that contains short (44 bp) terminal inverted repeats and covalently bound terminal proteins. The nucleotide sequence of SLP2 was determined. The rightmost 15.4 kb sequence is identical to that of the host chromosome, including the Tn4811 sequence at the border, which is interrupted by an insertion sequence (IS) element in SLP2. Examination of the flanking target sequences of Tn4811 suggests a previous recombinational event there. The 43 putative protein coding sequences contained many involved in replication (including two terminal protein homologues), partitioning, conjugal transfer and intramycelial spread. The terminally located helicase-like gene ttrA was necessary for conjugal transfer. The two telomeres diverge significantly in primary sequence, while preserving similar secondary structures. Mini-linear plasmids containing these telomeres replicated in S. lividans using the chromosomally encoded terminal protein. In addition, two pseudotelomere sequences are present near the left telomere. The G+C content and GC or AT skew profiles exhibit complex distributions. These, plus the inferred recombination at the right arm, indicate that SLP2 has evolved through rounds of exchanges involving at least three replicons.  相似文献   

10.
Shigella sonnei contains repetitive sequences, including an insertion element IS1, which can be isolated as double-stranded DNA fragments by DNA denaturation and renaturation and by treatment with S1 nuclease. In this paper, we describe a method of cloning the IS1 fragments prepared by the S1 nuclease digestion technique into phage M13mp8 RFI DNA. Several clones contained IS1, usually with a few additional bases. We isolated and characterized five other repetitive sequences using this method. One sequence, 1264 base-pairs in length, had terminal inverted repeats and contained two open reading frames. This sequence, called IS600, showed about 44% sequence homology with IS3 and was repeated more than 20 times in the Sh. sonnei chromosome. Another sequence (named IS629, 1310 base-pairs in length), which was repeated six times, was found also to be related to IS3 and thus IS600. Two other sequences (named IS630 and IS640, 1159 and 1092 base-pairs in length, respectively), which were repeated approximately ten times, had characteristic terminal inverted repeats and contained a large open reading frame coding for a protein. The inverted repeat sequences of IS630 were similar to the sequence at one end of IS200, a Salmonella-specific IS element. The fifth sequence, repeated ten times in Sh. sonnei, had about 98% sequence homology with a portion of IS2. The method described here can be applied to the isolation of IS or iso-IS elements present in any other bacterial chromosome.  相似文献   

11.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

12.
The tetracycline (Tc)-resistance transposon Tn10 has previously been shown to encode a small (~4 S) RNA species in Escherichia coli minicells. When Tn10-containing mini-cells were labeled in the presence of Tc a new RNA species was detected that hybridized specifically to DNA sequences from the outer 400 bp of each inverted repeat sequence (IS10).  相似文献   

13.
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSalpha and RSbeta (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845-1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSalpha or RSbeta. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.  相似文献   

14.
During recloning of Nicotiana tabacum L. repetitive sequence R8.3 in Escherichia coli, a modified clone that differed from the original by the insertion of an IS10 sequence was unintentionally produced. The insert was flanked by a 9-bp direct repeat derived from the R8.3 sequence, the 9-bp duplication of acceptor DNA in the site of insertion being a characteristic of IS10 transposition events. A database search using the FASTA program showed IS10 and other prokaryotic IS elements inserted into numerous eukaryotic clones. Unexpectedly, the IS10, which is not a natural component of the E. coli genome, appeared to be by far the most frequent contaminant of DNA databases among several IS sequences tested. In the GenEMBL database, the IS10 query sequence yielded positive scores with more than 500 eukaryotic clones. Insertions of shortened IS10 sequences having only one intact terminal inverted repeat were commonly found. Most full-length IS10 insertions (32 out of 40 analyzed) were flanked by 9-bp direct repeats having the consensus 5'-NPuCNN-NGPyN-3' with a strong preference for 5'-TGCTNA-GNN-3'. One insertion was flanked by an inverted repeat of more than 400 bp in length. PCR amplification and Southern analysis revealed the presence of IS10 sequences in E. coli strains commonly used for DNA cloning, including some reported to be Tn10-free. No IS10-specific PCR product was obtained with N. tabacum or human DNA. Our data suggest that transposition of IS10 elements may accompany cloning steps, particularly into large BAC vectors. This might lead to the relatively frequent contamination of DNA databases by this bacterial sequence. It is estimated that one in approximately every thousand eukaryotic clone in the databases is contaminated by IS-derived sequences. We recommend checking submitted sequences for the presence of IS10 and other IS elements. In addition, DNA databases should be corrected by removing contaminating IS sequences.  相似文献   

15.
S T Hu  L C Lee    G S Lei 《Journal of bacteriology》1996,178(19):5652-5659
The genome of the transposable element IS2 contains five open reading frames that are capable of encoding proteins greater than 50 amino acids; however, only one IS2 protein of 14 kDa had been detected. By replacing the major IS2 promoter located in the right terminal repeat of IS2 with the T7 promoter to express IS2 genes, we have detected another IS2 protein of 46 kDa. This 46-kDa protein was designated InsAB'. Analyses of the InsAB' sequence revealed motifs that are characteristic of transposases of other transposable elements. InsAB' has the ability to bind both terminal repeat sequences of IS2. It was shown to bind a 27-bp sequence (5'-GTTAAGTGATAACAGATGTCTGGAAAT-3', positions 1316 to 1290 by our numbering system [16 to 42 by the previous numbering system]) located at the inner end of the right terminal repeat and a 31-bp sequence (5'-TTATTTAAGTGATATTGGTTGTCTGGAGATT-3', positions 46 to 16 [1286 to 1316]), including the last 27 bp of the inner end and the adjacent 4 bp of the left terminal repeat of IS2. This result suggests that InsAB' is a transposase of IS2. Since there is no open reading frame capable of encoding a 46-kDa protein in the entire IS2 genome, this 46-kDa protein is probably produced by a translational frameshifting mechanism.  相似文献   

16.
D R Hyde  C P Tu 《Nucleic acids research》1982,10(13):3981-3993
The nucleotide sequences at the ends of the Tn4 transposon (mercury spectinomycin and sulfonamide resistance) have been determined. They are inverted repeated sequences of 38 nucleotides with three mismatched base pairs. These sequences are strongly homologous with the terminal sequences of Tn501 (mercury resistance) but less so with those of Tn3 (ampicillin resistance). The Tn4 transposon generates pentanucleotide members (Tn3, Tn1000, Tn501, Tn551, IS2) with the exception of Tn1721 and bacteriophage Mu. Among the three Tn4 insertion sites examined here, two of them occurred near a nonanucleotide sequence in perfect homology with part of the terminal inverted-repeat sequence of Tn4 and the third insertion occurred near a sequence of partial homology to one end of Tn4. All three insertions were in the same orientation such that IRb is proximal to its homologous sequence on the recipient DNA.  相似文献   

17.
Characterization of in vitro constructed IS30-flanked transposons   总被引:1,自引:0,他引:1  
R Stalder  W Arber 《Gene》1989,76(2):187-193
In order to facilitate functional studies on the mobile genetic element IS30, a resident of the Escherichia coli chromosome, transposon structures with two copies of IS30 flanking the chloramphenicol-resistance gene cat were constructed in vitro. Transposons containing IS30 as direct repeats (Tn2700 and Tn2702) transpose from multicopy plasmids into the genome of phage P1-15, thus giving rise to special transduction for cat with frequencies between 10(-5) and 10(-8)/plaque-forming unit. In contrast, transposon structures with IS30 in inverted repeat (Tn2701 and Tn2703) showed no detectable (less than 10(-9] transposition activity in vivo. By restriction analysis, two insertion sites of Tn2700 and Tn2702 on the phage P1-15 genome were indistinguishable from those observed earlier with a single copy of the IS30 element. These two insertion sites were used several times independently by Tn2700 and Tn2702. This confirms the non-random target selection by the element and it indicates that transposition of Tn2700 and Tn2702 follows the same rules as that of IS30.  相似文献   

18.
《Gene》1987,59(1):107-113
We present the nucleotide sequence of IS431, a new staphylococcal insertion sequence-like element flanking the mercury-resistance determinant of pI524 and associated with the methicillin-resistance determinant. IS431 left is 800 bp long and has a perfect terminal inverted repeat (IR) of 22 bp; IS431 right is 786 bp long and has a terminal IR homologous to the IR of IS431 left except that the terminal 8 bp are absent. Both IRs share a 10-bp homology with the IR of IS26 from Proteus vulgaris. No directly repeated sequences were detected immediately adjacent to the IRs. An open reading frame (ORF) of 675 bp spans most of the IS431 sequence. Its deduced amino acid (aa) sequence shows 40% homology to the 234-aa-long putative transposase coded by ORFI of IS26.  相似文献   

19.
20.
Two independent isolates of a Bordetella pertussis repeated DNA unit were sequenced and shown to be an insertion sequence element with five nucleotide differences between the two copies. The sequences were 1053 bp in length with near-perfect terminal inverted repeats of 28 bp, had three open reading frames, and were each flanked by short direct repeats. The two insertion sequences showed considerable homology to two other B. pertussis repeated DNA sequences reported recently: IS481 and a 530 bp repeated DNA unit. The B. pertussis insertion sequence would appear to comprise a group of closely related sequences differing mainly in flanking direct repeats and the terminal inverted repeats. The two isolates reported here, which were from the adenylate cyclase and agglutinogen 2 regions of the genome, were numbered IS48lvl and IS48lv2 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号